
Grid diagrams and Khovanov homologyJean-Marie Droz and Emmanuel WagnerAbstratWe explain how to ompute the Jones polynomial of a link from one of its griddiagrams and we observe a onnetion between Bigelow's homologial de�nition of theJones polynomial and Kau�man's de�nition of the Jones Polynomial. Consequently,we prove that the Maslov grading on the Seidel-Smith sympleti link invariant o-inides with the di�erene between the homologial grading on Khovanov homologyand the Jones grading on Khovanov homology. We give some evidenes for the truthof the Seidel-Smith onjeture.IntrodutionUsing sympleti geometry, Seidel and Smith onstruted an invariant of oriented linksin S3 [10℄. The Seidel-Smith invariant of an oriented link L is de�ned as the homology
Kh∗symp(L) of a hain omplex assoiated to L. The homologial grading of this hainomplex is denoted by P . They also onjetured that this invariant is isomorphi tothe Khovanov link homology Kh∗,∗(L):Conjeture (Seidel and Smith). For all k ∈ Z,

Khk
symp(L) ∼=

⊕

(i, j) ∈ Z2

i− j = k

Khi,j(L),where i is alled the Khovanov homologial grading and j the quantum grading.Manolesu showed [5℄ that the generators of the Seidel-Smith hain omplex are inone-to-one orrespondene with the intersetion points between homology represen-tative arising in Bigelow's onstrution of the Jones polynomial [1℄. Moreover, thisorrespondene allows us to endow the Seidel-Smith generators with Bigelow's Jonesgrading J . Supporting Seidel-Smith onjeture, it has been observed by Manolesuthat there is, on small examples, enough generators in the Bigelow onstrution tohave a omplex generated by them with homology the Khovanov homology (takinginto aount the gradings).The purpose of the present artile is to introdue a di�erential on the gradedfree abelian group generated by the Bigelow intersetion points, also alled Bigelow'sgenerators. This aim is ahieved by proving that there is an injetion of Bigelow'sgenerators into enhaned Kau�man states [4, 11℄. In other words, we will see theSeidel-Smith generators as a subset of the generators of the Khovanov hain omplex.Moreover, we prove that, as expeted, the gradings verify P = i− j and j = J . Ourmain theorem is:Theorem 1. There exists a di�erential δ on the free abelian group B generated byBigelow's intersetion points, that respets J , inreases P by 1 and suh that the hainomplex (B, δ) has homology the Khovanov homology.1



Our di�erential on the free graded abelian group generated by Bigelow's generatorsgives a omplex homotopi to the ombinatorially de�ned omplex used to omputeKhovanov homology [4℄. This gives strong supporting evidene for the Seidel-Smithonjeture by generalizing Manolesu's observation. The main result remains true forodd Khovanov homology [8℄, see Theorem 8.The tehniques used below are of intrinsi interest. Namely, we develop a om-binatorial desription of the Jones polynomial and of Khovanov homology in termsof retangular diagrams (see Setion 1). In partiular, our result gives an alternativeproof of the equivalene of Bigelow's de�nition of the Jones polynomial. In addition,grid diagrams appear in the ombinatorial desription of link Floer homology [6℄. Thisnew desription will be used in future work to investigate the relation between Kho-vanov type homologies and Heegaard-Floer type homologies (see e.g. [7, 9, 3℄).Outline. In the �rst setion, we introdue all de�nitions and notations neessaryto ompute the Jones polynomial from a grid diagram. In the seond setion, weonstrut an injetion of Bigelow's generators into enhaned Kau�man's states. Inthe third setion, we prove relations between the gradings and in the last setion weprove our main theorem.Aknowledgements. We wish to thank Anna Beliakova for interesting disus-sions and pointing to us the artile of Manolesu. The present artile would not existwithout the kind enouragements of Benjamin Audoux.1 De�nitions and notations1.1 Grid diagrams and linksA grid diagram of size n ∈ N−{0, 1} is a (n×n)−grid whose squares may be deoratedby either an O or an X so that eah olumn and eah row ontains exatly one O andone X . The number n is alled the omplexity of the grid diagram. Following [6℄, wedenote by O the set of O's and X the set of X 's. The X 's and the O's are alled thepuntures of the grid diagram.From any grid diagram, one an onstrut an oriented link diagram. For thispurpose, one should join the X and the O in eah olumn by a vertial segmentand the O to the X in eah row by an horizontal segment that passes under all thevertial segments. We hoose the orientation to be from the O's to the X 's on thehorizontal lines and from the X 's to the O's on the vertial lines. This produes aplanar retangular diagram for an oriented link in S3. Any oriented link in S3 admitsa planar retangular diagram [2℄. An example is shown in Figure 1.1.2 The set G of the Bigelow's intersetion pointsLet D be a planar retangular diagram of omplexity n. For eah vertial segment letus draw an oriented urve whih winds lokwise around the punture at the top ofthe segment and ounterlokwise around the punture at the bottom of the segment.The oriented urves obtained are alled �gure-eights. The �gure-eights are very narrowand as short as possible. We assume that the �gure-eights interset transversally andat most twie the horizontal segments, do not interset eah other and have onlyone transversal self-intersetion. We denote by G the set of unordered n-tuples of2



Figure 1: Grid diagram and planar retangular diagram for the trefoilintersetion points between horizontal segments and (vertial) �gure-eights, suh thateah (vertial) �gure-eight and eah (horizontal) segment ontains exatly one point.We denote by Z the set of intersetion points between �gure-eights and horizontalsegments. We de�ne x ∈ G (o ∈ G, respetively) as the set of points of Z that arenearest to theX 's (the O's, respetively), see Figure 2 for an example. To eah element
g ∈ G, one an assoiate a unique n-tuple, g = (g1, . . . , gn) in whih gi (i = 1, . . . , n)is the X , O or rossing nearest to gi.

Figure 2: Oriented �gure-eights and partiular elements x and o of G1.3 Gradings on GThree gradings on G will be de�ned. We de�ne P : G → Z as follows. Figure-eights areoriented as in Figure 2. Eah z ∈ Z is given an integer p(z): +1 if the part of the �gure-eight on whih z sits is oriented upward, 0 otherwise. Given g = (z1, . . . , zn) ∈ G,
P (g) = p(z1) + · · · + p(zn). For example, in Figure 2, P (x) = 2 and P (o) = 2.Given �nite sets of points A and B in the real plane, we de�ne I(A,B) to be thenumber of pairs (a1, a2) ∈ A and (b1, b2) ∈ B suh that a1 < b1 and a2 < b2. Thegrading T : G → Z is de�ned by T (g) = I(g, g), for g ∈ G.We de�ne a relative grading Q on G. Consider two elements g = (g1, . . . , gn) and
h = (h1, . . . , hn) in G. To de�ne the di�erene Q(g) − Q(h), we onsider the loop
γ(g, h) in the on�guration spae of n points in R2 de�ned as follows. We start at g,go along the horizontal segments to h, then go bak along the vertial �gure-eights to
g. We an also see γ(g, h) as a family of losed immersed oriented urves in R2. Then
Q(g)−Q(h) is de�ned to be the sum of the winding numbers of these losed immersed3



urves around the X 's and the O's. In other words, for eah X and O, we ountalgebraially the number of times eah immersed urve goes around the punture: +1for eah time a urve goes around a punture ounterlokwise and −1 for eah timea urve goes around a punture lokwise and we take the sum over all urves and allpuntures as relative grading. We de�ne the absolute grading Q by setting Q(x) = 0.1.4 Normalization of the gradings and the Jones polynomialWe introdue two lassial quantities assoiated to an oriented link diagram D (andhene, to an oriented planar retangular diagram). Given an oriented link diagram D,we resolve all the rossings of D as in Figure 3, we obtain a disjoint union of oriented
Figure 3: Oriented resolutionirles embedded in R2. We all these irles the Seifert irles of D. The rotationnumber of D, denoted by rot(D), is the sum of the ontributions of the irles. Theontribution of a Seifert irle is +1 if it is oriented ounterlokwise and −1 otherwise.Given a rossing c of an oriented link diagram D, we de�ne w(c) as in Figure 4. Wede�ne the writhe w(D) of D,
w(D) =

∑

c crossings of D

w(c).We denote by n+ the number of positive rossings and by n− the number of negativerossings of D. We have w(D) = n+ − n−.
Negative rossing c, w(c) = −1 Positive rossing c, w(c) = +1Figure 4: CrossingsWe de�ne the Jones grading J and the homologial grading P . Given a planarretangular diagram D, for an element g ∈ G we set

J(g) = 2(T (g)−Q(g)) − 2T (x) + rot(D) + w(D) and
P (g) = P (g) − P (x) − rot(D) − w(D).We prove below that the Jones polynomial of an oriented planar retangular dia-gram D an be written as:

V (D)(q) =
∑

g∈G

(−1)
P (g)

qJ(g). (1)
4



Figure 5: From a retangular diagram to a braid losure2 Bigelow's generators and enhaned Kau�man states2.1 From plat losures to retangular diagramsEquation (1) is a simple reformulation of Bigelow's homologial de�nition of the Jonespolynomial. In [1℄, Bigelow omputes the Jones polynomial of a link represented as theplat losure of a braid. Our set G is seen in the setting of Bigelow's de�nition as theset of intersetion points between a yle in homology represented by the �gure-eightsand another yle represented by the horizontal segments.In [5℄ (Setion 3, page 15 and 16), Manolesu explains how the plat losure of abraid an be given as a �attened braid diagram. A retangular diagram an easilybe transformed into a �attened braid diagram. Starting with a planar retangulardiagram in the plane with �gure-eights drawn, we apply a di�eomorphism of theplane sending all horizontal segments of the retangular diagram to onseutive non-interseting segments on a line, see Figure 5. We obtain a �attened braid diagram.Our de�nitions of the di�erent gradings are obtained by �pulling bak� the gradingsoriginally de�ned by Bigelow along the di�eomorphism de�ned above. Notie that weuse the notations and normalizations of Manolesu.2.2 The injetion φ from Bigelow's generators to enhanedKau�man statesFix an oriented retangular diagram D, we onstrut a bijetion between the set Gand a subset of the enhaned Kau�man states of an oriented link diagram. Given anunoriented link diagram D, an enhaned Kau�man state is a hoie of one resolutionfor eah rossing of D (see Figure 6), together with a hoie of orientation on everyresulting irle, see Figure 7 for an example. We all a hoie of resolution for eahrossing of D a resolution of D. We de�ne K to be the set of enhaned Kau�manstates.
Figure 6: Kau�man resolutionsConsider an oriented planar retangular diagram D, we de�ne H to be the set ofenhaned Kau�man states assoiated to the underlying unoriented link diagram suh5



Figure 7: Example of an enhaned Kau�man statethat around eah rossing, the ars oming from the resolutions are oriented as in oneof the on�gurations depited in Figure 8.
Figure 8: Allowed orientations around a resolution in an enhaned Kau�-man stateNotie that the enhaned Kau�man states that are not in H are those for whihat least near one rossing the orientation is as in Figure 9.
Figure 9: Forbidden orientations around a resolution in an enhanedKau�man stateLet D be an oriented planar retangular diagram, let g = (g1, . . . , gn) ∈ G. Weexplain how to assoiate to g an element φ(g) ∈ H, see e.g. Figure 11. Thinkingof a planar retangular diagram D as a set of horizontal and vertial segments, wean subdivide all the segments in D at the rossings of D to obtain a set of smallersegments that we denote by seg(D). To an element g ∈ G orresponds an orientationof the segments of seg(D) by the following two rules:
• A vertial segment s is oriented upward when the intersetion point of g nearestto the line ontaining s is lower than s. It is oriented downward otherwise.
• An horizontal segment s is oriented leftward when the intersetion point of gnearest to the line ontaining s is at the left of s. It is oriented rightwardotherwise.This means that around an intersetion point of g the orientation of seg(D) lookslike in Figure 10. See the Figure 11, the diagram in the middle for an another example.We obtain the enhaned Kau�man state φ(g) from the orientation on seg(D) byspeifying a resolution of eah rossing of D. The orientation on the irles of φ(g)being indued in the obvious way by the orientation on seg(D). For a rossing c, ifthere is no intersetion point of g near c, we resolve c in the only way that is oherentwith the orientation on seg(D) (see Figure 3). If there is an intersetion point gi of gin c, then the resolution depends on the position of gi. There are four possible ases6



Figure 10: Orientation near a gi

Figure 11: An element of G, the orientation it indues on seg(D) and itsorresponding enhaned Kau�man state φ(g)and Figure 12 desribes how to resolve in eah ase. Sine the orientation on seg(D)is oherent with our hoie of resolutions, the funtion g −→ φ(g) is well de�ned.

Figure 12: Resolution near a giTheorem 2. Let D be an oriented planar retangular diagram. The appliation φ :
g 7→ φ(g) de�nes a bijetion between G and H.Proof. We de�ne a map ψ from H to G, see Figure 13 for an example. Given anenhaned Kau�man state h in H, onsider the orientation indued by h on seg(D).We laim that on a vertial segment of D, there is at most one swith of orientationof the kind shown in Figure 14. This follows from the fat that if there were two, thenbetween them, there would be one swith of the type depited in Figure 15, whih isimpossible sine enhaned Kau�man state in H do not ontain resolutions oriented asin Figure 9. A similar argument proves that, on eah horizontal segment, there is atmost one swith of orientation (of the allowed type). It follows that one an assoiateto an element h ∈ H, a n-tuple ψ(h) of X 's, O's or rossings, suh that for any g ∈ G,7



Figure 13: Orientation indued on D by an enhaned Kau�man stateand assoiated element of G
Figure 14: Swith of orientation

Figure 15: Forbidden swith of orientation
g = ψ(h) implies that g and h indue the same orientation on seg(D). By using Figure12, we replae rossings in ψ(h) by elements of Z aording to the orientations of theirles around the rossing and replae puntures in ψ(h) by their nearest point in Z.We obtain a n-tuple ψ(h) ∈ G. Sine learly φ and ψ are inverses, φ de�nes a bijetionbetween G and H.3 Gradings3.1 Khovanov homologial grading and quantum gradingWe introdue two gradings i and j on H. By the previous theorem, they indue twogradings on G. Given an element h ∈ H, onsider the underlying resolution r(h) andde�ne i(h) to be the number of resolutions in r(h) of the type depited in Figure16. Then i(h)=i(h) − n−. We de�ne j(h) = rot(h) + i(h) + n+ − 2n−. Notie that
J(x) = j(x). As a onsequene, we de�ne for any g ∈ G,

j(g) = j(φ(g)) = rot(φ(g)) + i(φ(g)) + n+ − 2n−,

i(g) = i(φ(g)) = i(φ(g)) − n−.We express the grading j(g) diretly from g desribed as a set of intersetion points.More preisely, we deompose the grading j as the sum of three ontributions j1, j2and j3. 8



Figure 16: Resolution used in the de�nition of Khovanov homologialgrading on HWe de�ne j1(g) to be an algebrai ount on the orners of the retangular diagram.Eah orner of the retangular diagram has a ontribution of +1 or −1. Given g, j1(g)is the sum over all orners of these ontributions. For the ontributions of eah orners,see Figure 17 and Figure 18.
Figure 17: Corners with a ontribution to j1 of +1

Figure 18: Corners with a ontribution to j1 of −1We de�ne j2(g) to be an algebrai ount on the rossings that are near an interse-tion point of g. In other words, if g = (g1, . . . , gn), onsider g = (g1, . . . , gn). If gi ison a rossing, it has a ontribution of +1 or −1 depending on the positions of gi andof the self-intersetion of the orresponding �gure-eight, see Figure 19 and Figure 20.
Figure 19: Crossings with a ontribution to j2 of +1We de�ne j3(g) to be an algebrai ount on the rossings that do not have a pointof g nearby. In other words, if g = (g1, . . . , gn), onsider g = (g1, . . . , gn) and onsiderthe rossings where there is no gi. Eah of these rossings has a ontribution of +1or −1 depending on the position of the gi that is on the same �gure-eight and on theposition of the gj that is on the same horizontal segment, see Figure 21 and Figure9



Figure 20: Crossings with a ontribution to j2 of −122. Notie that j3 does not depend on the position of the self-intersetion.
Figure 21: Crossings with a ontribution to j3 of +1

Figure 22: Crossings with a ontribution to j3 of −1From previous de�nitions, we dedue that, for all g ∈ G,
rot(φ(g)) =

j1(g)

4
+
j2(g)

2
and

i(g) = i(φ(g)) =
j2(g)

2
+
j3(g)

2
+
n+ − n−

2
. (2)Hene,

j(g) =
j1(g)

4
+ j2(g) +

j3(g)

2
+

3

2
(n+ − n−), for all g ∈ G. (3)3.2 Relations between gradingsIn this subsetion, we prove that the gradings verify P = i− j and J = j.Theorem 3. Let D be an oriented planar retangular diagram. For all g ∈ G,

P (g) = i(g) − j(g).10



Proof. We denote by G′ the set of unordered n-tuples of intersetion points betweenhorizontal segments and vertial �gure-eights suh that eah (vertial) �gure-eightontains exatly one point. Observe that G is a subset of G′. Moreover, the gradings
j1, j2 and P on G extend in a natural way to G′. Sine

j(x) = rot(D) + w(D) , i(x) = 0 and P (x) = −rot(D) − w(D),we obtain
P (x) = i(x) − j(x).

Figure 23: Elementary moves11



We prove that P and i − j are equal as relative gradings. Notie that one ango from an element of G′ to another by a sequene of elementary moves hanging theposition of just one intersetion point on one �gure-eight. It remains to hek that Pand i−j hange by the same amount when suh an elementary move is performed. Thedi�erent ases of elementary moves are presented in Figure 23. Moreover, ombiningEquations (2) and (3), we have
j(g) =

j1(g)

4
+
j2(g)

2
+ i(g) + w(D), for all g ∈ G.Thus, we need to prove that j1

4 + j2
2 and −P vary by the same amount when anelementary move is performed. This an be heked diretly from the pitures inFigure 23. Notie that there are a priori 16 other ases to hek orresponding tohanges of positions of the self-intersetions of the �gure-eights in the twelve �rstelementary moves depited in Figure 23, but these ases follow from the followingobservation: A hange of position of the self-intersetion of the �gure-eight togetherwith a hange of position of the generator by swithing side if it sits between the oldand the new self-intersetions hanges neither j1

4 + j2
2 nor −P , see Figure 24.

Figure 24: Change of position of a self-intersetion point of a �gure-eightTheorem 4. Let D be an oriented planar retangular diagram, for all g ∈ G,
J(g) = j(g).Proof. Sine

j(x) = rot(D) + w(D) = J(x),it is su�ient to prove that j and J are equal as relative gradings.

Figure 25: The two parts of the �gure-eightFor A and B two sets of intersetion points, we de�ne I−(A,B) as the numberof pairs (a1, a2) ∈ A and (b1, b2) ∈ B suh that a1 < b1 and a2 > b2. Given g =
(g1, . . . , gn) ∈ G, we de�ne Qfar(g) as follows:

Qfar(g) = I(g,X ∪ O) − I−(g,X ∪ O).12



We divide any �gure-eight in a positive and a negative part by utting it at itslowest and heighest points, Figure 25. We de�ne Qloc(g) as the number of intersetionpoints of g on the positive side of the �gure-eight (in blue) minus the number of pointson the negative side of the �gure-eight (in red). We observe that
2P =rel Qloc. (4)(The notation =rel means that the two sides of the equation are equal up to an additiveonstant.)The relative grading Q between two generators g and h is de�ned as the totalwinding number of a set of losed paths around the puntures. This winding number ofa path an be omputed by ounting intersetion points of the path with the horizontaland vertial lines originating from all puntures (with some signs) and dividing by 4.Using this alternative de�nition of the winding number and examining separetely theontribution of the piees of the path on horizontal lines and on �gure-eights, we hekthat 4Q(g)− 4Q(h) = 2Qloc(g)− 2Qloc(h) +Qfar(g)−Qfar(h), in other words, that,as relative gradings, 4Q =rel 2Qloc +Qfar.Let us all good a line either vertial or horizontal that meets two puntures. Weall intersetion points of good lines good points.Claim. We have the equality of relative gradings:

4T − j3 +
j1

2
=rel Qfar. (5)Proof. For eah pair of one horizontal good line and one vertial good line, we examinethe ontributions of all pairs of one punture or intersetion point on the vertial lineand one punture or intersetion point on the horizontal line to 4T , j3, j1

2 and Qfar.We onsider di�erent ases aording to where the two good lines interset. We hekthat for eah pair of good lines, the total ontribution to Equation (5) from pointson the two lines are independent of the positions of the intersetion points of g. Forexample, if the two good lines interset on a rossing of the retangular diagram, only
4T and j3 are a�eted and the ontribution of the intersetion points to 4T and j3anel. Sine eah punture or intersetion point appears one on a vertial good lineand one on an horizontal good line, taking the sum over all possible pairs of goodlines gives twie Equation 5.Using Equation (5) divided by two and the de�nition of j by Equation (3), we get

j =rel

j1

4
+ j2 + 2T −

Qfar

2
+
j1

4
.Using Equation (4) and the formulation of P in terms of j1 and j2, we have

−Qloc =rel

j1

2
+ j2.Combining the last two equations gives

j =rel 2T −
Qfar

2
−Qloc.Sine Qfar

2 + Qloc =rel 2Q and J =rel 2(T − Q), we dedue j =rel J from whih
j = J follows.

13



4 Relation with Khovanov homologyIn [5℄, Manolesu notied that, in the ase of the trefoil, a free abelian group whosegenerators are labelled by Bigelow generators and are graded aording to the gradingof their label, has ranks in the di�erent gradings ompatible with having as homol-ogy the Khovanov homology. We prove that this observation holds for any link. Forthis purpose, we start with the Khovanov hain omplex, i.e the hain omplex whosegenerators are labelled by enhaned Kau�man states K and eliminate all generatorslying in K \ H. We end up with a hain omplex homotopi to the original one, witha set of generators in one-to-one orrespondane with G. This redution an be doneanonially over Q. Over Z the redution seems to depend of some arbitrary hoies.Our redution to a smaller omplex is anonial in the following sense. Two orientedretangular diagrams that are sent to eah other by di�eomorphisms of the plane thatsend vertial segments to vertial segments have isomorphi hain omplexes. Thisimplies that the hain omplex generated by Bigelow's homologial intersetion pointsis omputable from the ambient isomorphism type of the �attenend braid diagramand is as suh a andidate for a geometri interpretation.Proof. [of Theorem 1℄ We review a few fats about Khovanov homology (for preisede�nitions and more [4, 11℄). The Khovanov hain omplex is a bigraded omplex
CKh =

⊕

i,j

C
i,j
Khwith generators assoiated to enhaned Kau�man states

C
i,j
Kh =

⊕

s∈K,i(s)=i,j(s)=j

Z · s.Observe that Ci
Kh =

⊕

j∈Z
C

i,j
Kh is generated by all enhaned Kau�man states ob-tained by orienting the irles in a resolution r suh that i(r) = i. Hene, as usual,

Ci
Kh an be seen as ⊕

r,i(r)=i V
⊗k(r){i + n+ − n−} where V is the two dimensionalgraded Z-module spanned by 1 and x with j(1) = 1 and j(x) = −1, k(r) is the numberof irles in the resolution r and {·} is the shift operator in homologial grading. Onean identify an element in V (r) = V ⊗k(r) with a hoie of orientations of the k(r)irles. A irle oriented ounterlokwise orresponds to a 1 and a irle orientedlokwise orresponds to an x. Given a diagram D, with k rossings there are 2kresolutions of D. One an see these resolutions as lying on the verties of an hyper-ube of dimension k. Hene, the vetor spaes V (r) are indexed by the verties of thehyperube. Similarly, eah enhaned Kau�man state sits on a vertex of the hyper-ube. Two enhaned Kau�man states are onneted by the di�erential of Khovanovhomology if and only if they are on both ends of an edge of the hyperube and lookaround a rossing like one of the 18 pairs in Figure 26. Loally, all possible non-zerodi�erentials are depited in Figure 26. Naturally, one would have to introdue signsto fully speify the di�erential [4, 11℄ .We de�ne a new grading R on the Khovanov hain omplex as follows. Given anoriented link diagram D ∈ R2, onsider the underlying oriented 4-valent graph Γ inwhih eah rossing of D is replaed by a 4-valent vertex. Choose a point in eahonneted omponent of R2 \ Γ. This produes a family of points (xi)i∈I , where Iis a �nite set. For an enhaned Kau�man state s, we de�ne R(s) to be the windingnumber of the oriented irles of s around the xi's. In Figure 26, the blue ross andthe green ross orrespond to xi's. 14



The six di�erentials in the �rst olumn of Figure 26 are onneting generatorsbelonging to K \ H. These di�erentials respet the grading R. In addition, the re-maining twelve other types of di�erentials strily derease R. Therefore, the inreasing�ltration assoiated to the grading R is respeted by the di�erential of the Khovanovomplex. As a onsequene, the set of elements of K \ H together with the part ofthe di�erential that respets the grading R is a hain omplex. Moreover, this hainomplex is homotopi to zero. This follows from the fat that this hain omplex is ashifted diret sum of hyperube hain omplexes, where eah hyperube hain omplexis obtained by the usual proedure of �attening an hyperube [7, p.17℄ and replaingevery vertex by a opy of Z and every arrow by +Id or −Id. Suh an hyperube hainomplex is learly homotopi to zero.

Figure 26: Non-zero di�erentials in Khovanov omplexWe state a lemma in homologial algebra generalizing Gaussian elimination whihis proved in the Appendix.Lemma 5. Given a hain omplex C =
⊕

i∈Z
Ci, C δ

−→ C, δ of degree +1 suh that
C = A ⊕ B as graded abelian group and δ =

(

a d

c b

) with A
a

−→ A, B d
−→ A,

A
c

−→ B and B b
−→ B. Suppose that (B, b) is a hain omplex homotopi to zero.Then, for h : C−→C of degree −1 suh that −Id = hb+ bh, the hain omplex (C, δ)is homotopi to (A, a+ dhc).Theorem 1 follows from Theorem 3, Theorem 4 and Lemma 5.15



Corollary 6 (Bigelow [1℄). Given an oriented retangular diagram D,
V (D)(q) =

∑

g∈G

(−1)
P (g)

qJ(g)is the Jones polynomial.Corollary 7. There exists a di�erential δ on the Q-vetor spae B generated byBigelow's intersetion points G, that respets J , inreases P by 1 and suh that thehain omplex (B, δ) has homology the Khovanov homology. Moreover, over Q, thisdi�erential is anonial.Proof. The �rst part of the statement follows from Theorem 1. The seond part followsfrom the fat that, over Q, there is a anonial homotopy for Lemma 5. We onstrutthis homotopy. The set of elements of K \H together with the part of the di�erentialthat leaves the grading R invariant is a hain omplex denoted by C. Moreover,this hain omplex is a shifted diret sum of hyperube hain omplexes, where eahhyperube hain omplex is obtained by the usual proedure of �attening an hyperubeand in this ase replaing every vertex by a opy of Q and every arrow by +Id or
−Id. As explained before, those hyperubes are null homotopi. In partiular, givena deomposition of an hyperube of dimension n into two hyperubes of dimension
n − 1, one an take as homotopy minus the inverse of the di�erentials between thetwo hyperubes of dimension n − 1. Sine there is n ways to split an hyperube ofdimension n into two hyperubes of dimension n − 1, there are n homotopies of thetype desribed above. We denote them by h1, h2, . . . , hn. Eah of them omes from ahoie of splitting. We onsider h = 1

n

∑n

i=1 hi ; it is a homotopy to zero. Summingover all hyperubes omposing the hain omplex C, the average homotopies desribedabove, one obtains a homotopy to zero for the whole omplex C. Hene, over Q, thereis a anonial hoie of homotopy for the appliation of Lemma 5 and therefore, aanonially de�ned di�erential on the set of Bigelow's generators.Theorem 1 and Corollary 7 remain true for the odd Khovanov homology [8℄. Morepreisely, the proof only depends on the fat that one an endow enhaned Kau�man'sstates with a di�erential that respets the inreasing �ltration assoiated to the grading
R and suh that the part of the di�erential that respets the grading R is onnetingelements in K \ H. The di�erential onstruted in [8℄ is up to signs the originalKhovanov di�erential. Hene, we also have the following theorem:Theorem 8. There exists a di�erential δ on the free abelian group B generated byBigelow's intersetion points G, that respets J , inreases P by 1 and suh that thehain omplex (B, δ) has homology the odd Khovanov homology. Moreover, over Q,this di�erential is anonial.AppendixWe give the proof of Lemma 5.Proof. We begin by proving that (A, a+ dhc) is a hain omplex. Notie that δ2 = 0and b2 = 0 imply

cd = 0. (6)Moreover, δ2 = 0 also implies
a2 + dc, = 0, (7)
ad+ db = 0, (8)
ca+ bc = 0. (9)16



Hene,
(a+ dhc)(a+ dhc) = a2 + dhca+ adhc+ dhcdhc

= a2 + dhca+ adhc

= −dc− dhbc− dbhc

= −d(Id + hb+ bh)c

= 0.We de�ne a hain map f from (C, δ) to (A, a+ dhc) by the formula
f =

(

1 dh
)and a hain map g from (A, a+ dhc) to (C, δ) by the formula

g =

(

1
hc

)

.It is straightforward to hek that fδ = (a+ dhc)f and δg = g(a+ dhc) using (6), (9),(8) and −Id = hb + bh. Moreover, we de�ne a homotopy H =

(

0 0
0 h

) going from
C to C. If follows from (6) and −Id = hb+ bh that gf − Id = Hδ+ δH . We de�ne H ′as follows: H ′ = dh3c. Let us hek that gf − Id = H ′(a + dhc) + (a + dhc)H ′. Wehave

gf − Id = Id + dh2c− Id = dh2c (10)Moreover, we have
dh2c = −dhbh2c− dh2bhc

= 2dh2c+ dbh3c+ dh3bc

= 2dh2c− adh3c− dh3ca,from whih we dedue,
dh2c = dh3ca+ adh3c. (11)Hene ombining (10) and (11), we have
gf − Id = dh3ca+ adh3c.Moreover,

H ′(a+ dhc) + (a+ dhc)H ′ = dh3c(a+ dhc) + (a+ dhc)dh3c

= dh3ca+ adh3c.Referenes[1℄ S. Bigelow, A homologial de�nition of the Jones polynomial, Invariants of knotsand 3-manifolds (Kyoto, 2001), 29�41 (eletroni), Geom. Topol. Monogr., 4,Geom. Topol. Publ., Coventry, 2002.[2℄ I. A. Dynnikov, Ar-presentations of links. Monotoni simpli�ation,math.GT/0208153v3 17
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