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Abstract

We explain how to compute the Jones polynomial of a link from one of its grid
diagrams and we observe a connection between Bigelow’s homological definition of the
Jones polynomial and Kauffman’s definition of the Jones Polynomial. Consequently,
we prove that the Maslov grading on the Seidel-Smith symplectic link invariant co-
incides with the difference between the homological grading on Khovanov homology
and the Jones grading on Khovanov homology. We give some evidences for the truth
of the Seidel-Smith conjecture.

Introduction

Using symplectic geometry, Seidel and Smith constructed an invariant of oriented links
in 3 [10]. The Seidel-Smith invariant of an oriented link L is defined as the homology
KNy, (L) of a chain complex associated to L. The homological grading of this chain
complex is denoted by P. They also conjectured that this invariant is isomorphic to

the Khovanov link homology Kh**(L):

Conjecture (Seidel and Smith). For all k € Z,

Knk, L) = P  Kh(L),
(i,5) € Z°
i—j=k

where i is called the Khovanov homological grading and j the quantum grading.

Manolescu showed [5] that the generators of the Seidel-Smith chain complex are in
one-to-one correspondence with the intersection points between homology represen-
tative arising in Bigelow’s construction of the Jones polynomial [1]. Moreover, this
correspondence allows us to endow the Seidel-Smith generators with Bigelow’s Jones
grading J. Supporting Seidel-Smith conjecture, it has been observed by Manolescu
that there is, on small examples, enough generators in the Bigelow construction to
have a complex generated by them with homology the Khovanov homology (taking
into account the gradings).

The purpose of the present article is to introduce a differential on the graded
free abelian group generated by the Bigelow intersection points, also called Bigelow’s
generators. This aim is achieved by proving that there is an injection of Bigelow’s
generators into enhanced Kauffman states [4, 11]. In other words, we will see the
Seidel-Smith generators as a subset of the generators of the Khovanov chain complex.
Moreover, we prove that, as expected, the gradings verify P =¢ — j and j = J. Our
main theorem is:

Theorem 1. There exists a differential § on the free abelian group B generated by
Bigelow’s intersection points, that respects J, increases P by 1 and such that the chain
complex (B, ) has homology the Khovanov homology.



Our differential on the free graded abelian group generated by Bigelow’s generators
gives a complex homotopic to the combinatorially defined complex used to compute
Khovanov homology [4]. This gives strong supporting evidence for the Seidel-Smith
conjecture by generalizing Manolescu’s observation. The main result remains true for
odd Khovanov homology [8], see Theorem 8.

The techniques used below are of intrinsic interest. Namely, we develop a com-
binatorial description of the Jones polynomial and of Khovanov homology in terms
of rectangular diagrams (see Section 1). In particular, our result gives an alternative
proof of the equivalence of Bigelow’s definition of the Jones polynomial. In addition,
grid diagrams appear in the combinatorial description of link Floer homology [6]. This
new description will be used in future work to investigate the relation between Kho-
vanov type homologies and Heegaard-Floer type homologies (see e.g. [7, 9, 3]).

Outline. In the first section, we introduce all definitions and notations necessary
to compute the Jones polynomial from a grid diagram. In the second section, we
construct an injection of Bigelow’s generators into enhanced Kauffman’s states. In
the third section, we prove relations between the gradings and in the last section we
prove our main theorem.

Aknowledgements. We wish to thank Anna Beliakova for interesting discus-
sions and pointing to us the article of Manolescu. The present article would not exist
without the kind encouragements of Benjamin Audoux.

1 Definitions and notations

1.1 Grid diagrams and links

A grid diagram of size n € N—{0, 1} is a (n x n)—grid whose squares may be decorated
by either an O or an X so that each column and each row contains exactly one O and
one X. The number n is called the complezity of the grid diagram. Following [6], we
denote by O the set of O’s and X the set of X’s. The X’s and the O’s are called the
punctures of the grid diagram.

From any grid diagram, one can construct an oriented link diagram. For this
purpose, one should join the X and the O in each column by a vertical segment
and the O to the X in each row by an horizontal segment that passes under all the
vertical segments. We choose the orientation to be from the O’s to the X’s on the
horizontal lines and from the X’s to the O’s on the vertical lines. This produces a
planar rectangular diagram for an oriented link in S®. Any oriented link in S® admits
a planar rectangular diagram [2]. An example is shown in Figure 1.

1.2 The set G of the Bigelow’s intersection points

Let D be a planar rectangular diagram of complexity n. For each vertical segment let
us draw an oriented curve which winds clockwise around the puncture at the top of
the segment and counterclockwise around the puncture at the bottom of the segment.
The oriented curves obtained are called figure-eights. The figure-eights are very narrow
and as short as possible. We assume that the figure-eights intersect transversally and
at most twice the horizontal segments, do not intersect each other and have only
one transversal self-intersection. We denote by G the set of unordered n-tuples of
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Figure 1: Grid diagram and planar rectangular diagram for the trefoil

intersection points between horizontal segments and (vertical) figure-eights, such that
each (vertical) figure-eight and each (horizontal) segment contains exactly one point.
We denote by Z the set of intersection points between figure-eights and horizontal
segments. We define x € G (o € G, respectively) as the set of points of Z that are
nearest to the X’s (the O’s, respectively), see Figure 2 for an example. To each element
g € G, one can associate a unique n-tuple, g = (g1,...,9,) in which g; (i =1,...,n)
is the X, O or crossing nearest to g;.

Figure 2: Oriented figure-eights and particular elements x and o of G

1.3 Gradings on §

Three gradings on G will be defined. We define P : G — Z as follows. Figure-eights are
oriented as in Figure 2. Each z € Z is given an integer p(z): +1 if the part of the figure-
eight on which z sits is oriented upward, 0 otherwise. Given g = (21,...,2,) € G,

P(g) = p(z1) +--- + p(z,). For example, in Figure 2, P(x) = 2 and P(0) = 2.

Given finite sets of points A and B in the real plane, we define Z(A, B) to be the
number of pairs (a1,a2) € A and (b1,b2) € B such that a; < by and as < by. The
grading T': G — Z is defined by T'(g) = Z(g, g), for g € G.

We define a relative grading @ on G. Consider two elements g = (g1, ...,9n) and
h = (h1,...,hy) in G. To define the difference Q(g) — Q(h), we consider the loop
v(g, h) in the configuration space of n points in R? defined as follows. We start at g,
go along the horizontal segments to h, then go back along the vertical figure-eights to
g. We can also see (g, h) as a family of closed immersed oriented curves in R?. Then
Q(g) — Q(h) is defined to be the sum of the winding numbers of these closed immersed



curves around the X’s and the O’s. In other words, for each X and O, we count
algebraically the number of times each immersed curve goes around the puncture: +1
for each time a curve goes around a puncture counterclockwise and —1 for each time
a curve goes around a puncture clockwise and we take the sum over all curves and all
punctures as relative grading. We define the absolute grading @) by setting Q(x) = 0.

1.4 Normalization of the gradings and the Jones polynomial

We introduce two classical quantities associated to an oriented link diagram D (and
hence, to an oriented planar rectangular diagram). Given an oriented link diagram D,
we resolve all the crossings of D as in Figure 3, we obtain a disjoint union of oriented
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Figure 3: Oriented resolution

circles embedded in R%2. We call these circles the Seifert circles of D. The rotation
number of D, denoted by rot(D), is the sum of the contributions of the circles. The
contribution of a Seifert circle is +1 if it is oriented counterclockwise and —1 otherwise.

Given a crossing ¢ of an oriented link diagram D, we define w(c) as in Figure 4. We
define the writhe w(D) of D,

w(D) = Z w(c).

ccrossings of D

We denote by ny the number of positive crossings and by n_ the number of negative
crossings of D. We have w(D) =ny —n_.

y V
Negative crossing ¢, w(c) = —1 Positive crossing ¢, w(c) = +1

Figure 4: Crossings

We define the Jones grading J and the homological grading P. Given a planar
rectangular diagram D, for an element g € G we set

J(g) = 2(T(g9) — Q(9)) — 2T (%) + rot(D) + w(D) and

P(g) = P(g) — P(x) — rot(D) — w(D).

We prove below that the Jones polynomial of an oriented planar rectangular dia-
gram D can be written as:

V(D)(q) = Y (-1)79g’ . (1)

Y



Figure 5: From a rectangular diagram to a braid closure

2 Bigelow’s generators and enhanced Kauffman states

2.1 From plat closures to rectangular diagrams

Equation (1) is a simple reformulation of Bigelow’s homological definition of the Jones
polynomial. In [1], Bigelow computes the Jones polynomial of a link represented as the
plat closure of a braid. Our set G is seen in the setting of Bigelow’s definition as the
set of intersection points between a cycle in homology represented by the figure-eights
and another cycle represented by the horizontal segments.

In [5] (Section 3, page 15 and 16), Manolescu explains how the plat closure of a
braid can be given as a flattened braid diagram. A rectangular diagram can easily
be transformed into a flattened braid diagram. Starting with a planar rectangular
diagram in the plane with figure-eights drawn, we apply a diffeomorphism of the
plane sending all horizontal segments of the rectangular diagram to consecutive non-
intersecting segments on a line, see Figure 5. We obtain a flattened braid diagram.
Our definitions of the different gradings are obtained by “pulling back” the gradings
originally defined by Bigelow along the diffeomorphism defined above. Notice that we
use the notations and normalizations of Manolescu.

2.2 The injection ¢ from Bigelow’s generators to enhanced
Kauffman states

Fix an oriented rectangular diagram D, we construct a bijection between the set G
and a subset of the enhanced Kauffman states of an oriented link diagram. Given an
unoriented link diagram D, an enhanced Kauffman state is a choice of one resolution
for each crossing of D (see Figure 6), together with a choice of orientation on every
resulting circle, see Figure 7 for an example. We call a choice of resolution for each
crossing of D a resolution of D. We define K to be the set of enhanced Kauffman

states.
) (— X— X
— —
/ R
Figure 6: Kauffman resolutions

Consider an oriented planar rectangular diagram D, we define H to be the set of
enhanced Kauffman states associated to the underlying unoriented link diagram such
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Figure 7: Example of an enhanced Kauffman state

that around each crossing, the arcs coming from the resolutions are oriented as in one
of the configurations depicted in Figure 8.

I N \k‘\k‘\kaf/zfj//’

Figure 8: Allowed orientations around a resolution in an enhanced Kauff-
man state

Notice that the enhanced Kauffman states that are not in H are those for which
at least near one crossing the orientation is as in Figure 9.

N

Figure 9: Forbidden orientations around a resolution in an enhanced
Kauffman state

Let D be an oriented planar rectangular diagram, let ¢ = (g1,...,9,) € G. We
explain how to associate to ¢g an element ¢(g) € H, see e.g. Figure 11. Thinking
of a planar rectangular diagram D as a set of horizontal and vertical segments, we
can subdivide all the segments in D at the crossings of D to obtain a set of smaller
segments that we denote by seg(D). To an element g € G corresponds an orientation
of the segments of seg(D) by the following two rules:

e A vertical segment s is oriented upward when the intersection point of g nearest
to the line containing s is lower than s. It is oriented downward otherwise.

e An horizontal segment s is oriented leftward when the intersection point of g
nearest to the line containing s is at the left of s. It is oriented rightward
otherwise.

This means that around an intersection point of § the orientation of seg(D) looks
like in Figure 10. See the Figure 11, the diagram in the middle for an another example.

We obtain the enhanced Kauffman state ¢(g) from the orientation on seg(D) by
specifying a resolution of each crossing of D. The orientation on the circles of ¢(g)
being induced in the obvious way by the orientation on seg(D). For a crossing c, if
there is no intersection point of g near ¢, we resolve c in the only way that is coherent
with the orientation on seg(D) (see Figure 3). If there is an intersection point g; of g
in ¢, then the resolution depends on the position of g;. There are four possible cases



Figure 10: Orientation near a g;
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Figure 11: An element of G, the orientation it induces on seg(D) and its
corresponding enhanced Kauffman state ¢(g)

and Figure 12 describes how to resolve in each case. Since the orientation on seg(D)
is coherent with our choice of resolutions, the function g — ¢(g) is well defined.
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Figure 12: Resolution near a g;

Theorem 2. Let D be an oriented planar rectangular diagram. The application ¢ :
g— &(g) defines a bijection between G and H.

Proof. We define a map v from H to G, see Figure 13 for an example. Given an
enhanced Kauffman state h in H, consider the orientation induced by h on seg(D).

We claim that on a vertical segment of D, there is at most one switch of orientation
of the kind shown in Figure 14. This follows from the fact that if there were two, then
between them, there would be one switch of the type depicted in Figure 15, which is
impossible since enhanced Kauffman state in H do not contain resolutions oriented as
in Figure 9. A similar argument proves that, on each horizontal segment, there is at
most one switch of orientation (of the allowed type). It follows that one can associate
to an element h € H, a n-tuple ¥(h) of X’s, O’s or crossings, such that for any g € G,




Figure 13: Orientation induced on D by an enhanced Kauffman state
and associated element of G

Figure 14: Switch of orientation

Figure 15: Forbidden switch of orientation

g = t(h) implies that g and h induce the same orientation on seg(D). By using Figure
12, we replace crossings in ¢(h) by elements of Z according to the orientations of the
circles around the crossing and replace punctures in ¢ (h) by their nearest point in Z.
We obtain a n-tuple ¥(h) € G. Since clearly ¢ and 1 are inverses, ¢ defines a bijection
between G and H. O

3 Gradings

3.1 Khovanov homological grading and quantum grading

We introduce two gradings ¢« and j on H. By the previous theorem, they induce two
gradings on G. Given an element h € H, consider the underlying resolution r(h) and
define i(h) to be the number of resolutions in r(h) of the type depicted in Figure
16. Then i(h)—i(h) — n_. We define j(h) = rot(h) + i(h) + ny — 2n_. Notice that
J(x) = j(x). As a consequence, we define for any g € G,

i(g9) = j(¢(g)) = rot(4(g)) +i(¢(9)) + ny — 2n_,
i(g9) = i(¢(9)) = i(¢(g)) — n—.

We express the grading j(g) directly from g described as a set of intersection points.

More precisely, we decompose the grading j as the sum of three contributions ji, jo
and js.
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Figure 16: Resolution used in the definition of Khovanov homological
grading on ‘H

We define j1(g) to be an algebraic count on the corners of the rectangular diagram.
Each corner of the rectangular diagram has a contribution of +1 or —1. Given g, j1(g)
is the sum over all corners of these contributions. For the contributions of each corners,
see Figure 17 and Figure 18.

8 R4

Figure 17: Corners with a contribution to j; of 4+1

fd R4

Figure 18: Corners with a contribution to j; of —1

We define j2(g) to be an algebraic count on the crossings that are near an intersec-
tion point of g. In other words, if ¢ = (g1,...,9n), consider g = (g1,...,G,). If g; is
on a crossing, it has a contribution of +1 or —1 depending on the positions of g; and
of the self-intersection of the corresponding figure-eight, see Figure 19 and Figure 20.

4

Figure 19: Crossings with a contribution to jo of +1

We define j3(g) to be an algebraic count on the crossings that do not have a point
of g nearby. In other words, if g = (g1, ..., gn), consider g = (g1, . ..,Jn) and consider
the crossings where there is no g;. Each of these crossings has a contribution of +1
or —1 depending on the position of the g; that is on the same figure-eight and on the
position of the g; that is on the same horizontal segment, see Figure 21 and Figure



\l/

[

Figure 20: Crossings with a contribution to jo of —1

22. Notice that j3 does not depend on the position of the self-intersection.

o

II:
|x|

Figure 21: Crossings with a contribution to js of +1
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Figure 22: Crossings with a contribution to js of —1

From previous definitions, we deduce that, for all g € G,

rot(6(g)) = 219 1

1 5 and
i(g) = i(og)) = 2 Bla) et e ?
Hence, ) .
<>:#+J‘z<g>+@+§<n+—n—% forall g € g. @)

3.2 Relations between gradings
In this subsection, we prove that the gradings verify P =7 — j and J = j.

Theorem 3. Let D be an oriented planar rectangular diagram. For all g € G,

P(g) =i(g) — j(g)-

10



Proof. We denote by G’ the set of unordered n-tuples of intersection points between
horizontal segments and vertical figure-eights such that each (vertical) figure-eight
contains exactly one point. Observe that G is a subset of G’. Moreover, the gradings
71, 72 and P on G extend in a natural way to G’. Since

Jj(x) =rot(D) +w(D) , i(x) =0 and P(x) = —rot(D) — w(D),

we obtain

~
~
~
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Figure 23: Elementary moves
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We prove that P and ¢ — j are equal as relative gradings. Notice that one can
go from an element of G’ to another by a sequence of elementary moves changing the
position of just one intersection point on one figure-eight. It remains to check that P
and ¢—j change by the same amount when such an elementary move is performed. The
different cases of elementary moves are presented in Figure 23. Moreover, combining
Equations (2) and (3), we have

Jlg) = # + M +i(g) +w(D), for all g € G.

2
Thus, we need to prove that jzl + %2 and —P vary by the same amount when an
elementary move is performed. This can be checked directly from the pictures in
Figure 23. Notice that there are a priori 16 other cases to check corresponding to
changes of positions of the self-intersections of the figure-eights in the twelve first
elementary moves depicted in Figure 23, but these cases follow from the following
observation: A change of position of the self-intersection of the figure-eight together
with a change of position of the generator by switching side if it sits between the old
and the new self-intersections changes neither % + %2 nor — P, see Figure 24.

%FVH%I% \/”/\

Figure 24: Change of position of a self-intersection point of a figure-eight

4

Theorem 4. Let D be an oriented planar rectangular diagram, for all g € G,

J(g) =3j(9)-

Proof. Since
J(x) = rot(D) + w(D) = J(x),

it is sufficient to prove that j and J are equal as relative gradings.

T e )

Figure 25: The two parts of the figure-eight

For A and B two sets of intersection points, we define Z~ (A, B) as the number
of pairs (aj,a2) € A and (by,b2) € B such that a1 < by and as > bs. Given g =
(g15---,9n) € G, we define Qfqr(g) as follows:

Qrar(9) =Z(9,XU0) - I (9,XU0).

12



We divide any figure-eight in a positive and a negative part by cutting it at its
lowest and heighest points, Figure 25. We define Qj,.(¢g) as the number of intersection
points of g on the positive side of the figure-eight (in blue) minus the number of points
on the negative side of the figure-eight (in red). We observe that

2P —rel Qloc- (4)

(The notation =,..; means that the two sides of the equation are equal up to an additive
constant.)

The relative grading ) between two generators g and h is defined as the total
winding number of a set of closed paths around the punctures. This winding number of
a path can be computed by counting intersection points of the path with the horizontal
and vertical lines originating from all punctures (with some signs) and dividing by 4.
Using this alternative definition of the winding number and examining separetely the
contribution of the pieces of the path on horizontal lines and on figure-eights, we check
that 4Q(g) — 4Q(h) = 2Qi0c(9) — 2Q10c(h) + Q rar(9) — Qfar(h), in other words, that,
as relative gradings, 4Q =;¢; 2Qioc + Q far-

Let us call good a line either vertical or horizontal that meets two punctures. We
call intersection points of good lines good points.

Claim. We have the equality of relative gradings:

4T — j3 + % —rel Qfar- (5)

Proof. For each pair of one horizontal good line and one vertical good line, we examine
the contributions of all pairs of one puncture or intersection point on the vertical line
and one puncture or intersection point on the horizontal line to 47T, j3, % and Q ¢qr-
We consider different cases according to where the two good lines intersect. We check
that for each pair of good lines, the total contribution to Equation (5) from points
on the two lines are independent of the positions of the intersection points of g. For
example, if the two good lines intersect on a crossing of the rectangular diagram, only
4T and j3 are affected and the contribution of the intersection points to 47 and j3
cancel. Since each puncture or intersection point appears once on a vertical good line
and once on an horizontal good line, taking the sum over all possible pairs of good
lines gives twice Equation 5. O

Using Equation (5) divided by two and the definition of j by Equation (3), we get

. jl . Qfar jl
=l = or — 2er L
J L + 2+ 9 + 1

Using Equation (4) and the formulation of P in terms of j; and jo, we have

J1
_Qloc =rel &

) + J2.

Combining the last two equations gives
. Qr
J =rel 2T — % - Qloc-

Since % + Qioc =ret 2Q and J =, 2(T — Q), we deduce j =,¢ J from which
j = J follows. O

13



4 Relation with Khovanov homology

In [5], Manolescu noticed that, in the case of the trefoil, a free abelian group whose
generators are labelled by Bigelow generators and are graded according to the grading
of their label, has ranks in the different gradings compatible with having as homol-
ogy the Khovanov homology. We prove that this observation holds for any link. For
this purpose, we start with the Khovanov chain complex, i.e the chain complex whose
generators are labelled by enhanced Kauffman states I and eliminate all generators
lying in K\ H. We end up with a chain complex homotopic to the original one, with
a set of generators in one-to-one correspondance with G. This reduction can be done
canonically over Q. Over Z the reduction seems to depend of some arbitrary choices.

Our reduction to a smaller complex is canonical in the following sense. Two oriented
rectangular diagrams that are sent to each other by diffeomorphisms of the plane that
send vertical segments to vertical segments have isomorphic chain complexes. This
implies that the chain complex generated by Bigelow’s homological intersection points
is computable from the ambient isomorphism type of the flattenend braid diagram
and is as such a candidate for a geometric interpretation.

Proof. [of Theorem 1] We review a few facts about Khovanov homology (for precise
definitions and more [4, 11]). The Khovanov chain complex is a bigraded complex

Cren =P Cie,

]

with generators associated to enhanced Kauffman states

ci=- @D s

SEK,i(s)=1,j(s)=4

Observe that Ci;; = @jez C;-’(J}I is generated by all enhanced Kauffman states ob-
tained by orienting the circles in a resolution r such that i(r) = i. Hence, as usual,
i, can be seen as D, iy =i VORI 4+ n, —n_} where V is the two dimensional
graded Z-module spanned by 1 and 2 with j(1) = 1 and j(x) = —1, k(r) is the number
of circles in the resolution r and {-} is the shift operator in homological grading. One
can identify an element in V(r) = V®*) with a choice of orientations of the k(r)
circles. A circle oriented counterclockwise corresponds to a 1 and a circle oriented
clockwise corresponds to an z. Given a diagram D, with k crossings there are 2
resolutions of D. One can see these resolutions as lying on the vertices of an hyper-
cube of dimension k. Hence, the vector spaces V(r) are indexed by the vertices of the
hypercube. Similarly, each enhanced Kauffman state sits on a vertex of the hyper-
cube. Two enhanced Kauffman states are connected by the differential of Khovanov
homology if and only if they are on both ends of an edge of the hypercube and look
around a crossing like one of the 18 pairs in Figure 26. Locally, all possible non-zero
differentials are depicted in Figure 26. Naturally, one would have to introduce signs
to fully specify the differential [4, 11] .

We define a new grading R on the Khovanov chain complex as follows. Given an
oriented link diagram D € R?, consider the underlying oriented 4-valent graph I in
which each crossing of D is replaced by a 4-valent vertex. Choose a point in each
connected component of R? \ I'. This produces a family of points (x;);cr, where I
is a finite set. For an enhanced Kauffman state s, we define R(s) to be the winding
number of the oriented circles of s around the z;’s. In Figure 26, the blue cross and
the green cross correspond to x;’s.

14



The six differentials in the first column of Figure 26 are connecting generators
belonging to K \ H. These differentials respect the grading R. In addition, the re-
maining twelve other types of differentials stricly decrease R. Therefore, the increasing
filtration associated to the grading R is respected by the differential of the Khovanov
complex. As a consequence, the set of elements of K \ H together with the part of
the differential that respects the grading R is a chain complex. Moreover, this chain
complex is homotopic to zero. This follows from the fact that this chain complex is a
shifted direct sum of hypercube chain complexes, where each hypercube chain complex
is obtained by the usual procedure of flattening an hypercube [7, p.17] and replacing
every vertex by a copy of Z and every arrow by +Id or —Id. Such an hypercube chain
complex is clearly homotopic to zero.
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Figure 26: Non-zero differentials in Khovanov complex

We state a lemma in homological algebra generalizing Gaussian elimination which
is proved in the Appendix.

Lemma 5. Given a chain compler C = @,, Cct, C N C, 6 of degree +1 such that

¢ i) withAL»A,Bi>A,
A% B and B> B. Suppose that (B,b) is a chain complex homotopic to zero.
Then, for h : C—C of degree —1 such that —1d = hb + bh, the chain complezx (C,J)
is homotopic to (A, a + dhc).

C = A® B as graded abelian group and § =

Theorem 1 follows from Theorem 3, Theorem 4 and Lemma 5. O
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Corollary 6 (Bigelow [1]). Given an oriented rectangular diagram D,

V(D)g) =} (-1)"g"?

9€g
is the Jomes polynomial.

Corollary 7. There exists a differential § on the Q-vector space B generated by
Bigelow’s intersection points G, that respects J, increases P by 1 and such that the
chain complex (B,d) has homology the Khovanov homology. Moreover, over Q, this
differential is canonical.

Proof. The first part of the statement follows from Theorem 1. The second part follows
from the fact that, over Q, there is a canonical homotopy for Lemma 5. We construct
this homotopy. The set of elements of K\ H together with the part of the differential
that leaves the grading R invariant is a chain complex denoted by C. Moreover,
this chain complex is a shifted direct sum of hypercube chain complexes, where each
hypercube chain complex is obtained by the usual procedure of flattening an hypercube
and in this case replacing every vertex by a copy of Q and every arrow by +Id or
—Id. As explained before, those hypercubes are null homotopic. In particular, given
a decomposition of an hypercube of dimension n into two hypercubes of dimension
n — 1, one can take as homotopy minus the inverse of the differentials between the
two hypercubes of dimension n — 1. Since there is n ways to split an hypercube of
dimension n into two hypercubes of dimension n — 1, there are n homotopies of the
type described above. We denote them by hq, ho, ..., h,. Each of them comes from a
choice of splitting. We consider h = %Z?:l h; ; it is a homotopy to zero. Summing
over all hypercubes composing the chain complex C, the average homotopies described
above, one obtains a homotopy to zero for the whole complex C'. Hence, over Q, there
is a canonical choice of homotopy for the application of Lemma 5 and therefore, a
canonically defined differential on the set of Bigelow’s generators. O

Theorem 1 and Corollary 7 remain true for the odd Khovanov homology [8]. More
precisely, the proof only depends on the fact that one can endow enhanced Kauffman’s
states with a differential that respects the increasing filtration associated to the grading
R and such that the part of the differential that respects the grading R is connecting
elements in IC\ H. The differential constructed in [8] is up to signs the original
Khovanov differential. Hence, we also have the following theorem:

Theorem 8. There exists a differential 6 on the free abelian group B generated by
Bigelow’s intersection points G, that respects J, increases P by 1 and such that the
chain complex (B,d) has homology the odd Khovanov homology. Moreover, over Q,
this differential is canonical.

Appendix
We give the proof of Lemma 5.

Proof. We begin by proving that (A, a + dhe) is a chain complex. Notice that % = 0
and b? = 0 imply

cd= 0. (6)
Moreover, 62 = 0 also implies
a’*+de, = 0, (7)
ad+db = 0, ()
ca+bc = 0. (9)
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Hence,

(a4 dhc)(a+dhe) = a® + dhca + adhc + dhedhe
= a® + dhca + adhe
= —dc — dhbc — dbhc
= —d(Id + hb+ bh)c
= 0.

We define a chain map f from (C,0) to (A, a + dhe) by the formula
f=(1 dn)

and a chain map g from (A, a + dhc) to (C,6) by the formula

(i)

It is straightforward to check that fd = (a+ dhc)f and dg = g(a + dhc) using (6), (9),
0 2 going from
C to C. If follows from (6) and —Id = hb+ bh that gf —Id = Hé + 6H. We define H'
as follows: H' = dh®c. Let us check that gf — Id = H'(a + dhc) + (a + dhc)H'. We
have

(8) and —Id = hb + bh. Moreover, we define a homotopy H = < 0

gf —Id =1d + dh*c — Id = dh*c (10)
Moreover, we have
dh?c = —dhbh*c — dh*bhc
= 2dh*c + dbh*c + dh>be

= 2dh*c — adh’c — dh’ca,
from which we deduce,
dh*c = dh*ca + adh®c. (11)
Hence combining (10) and (11), we have
gf —1d = dh3ca + adh’c.

Moreover,

H'(a + dhc) + (a + dhe)H' dh®*c(a + dhc) + (a + dhe)dhc

= dhica+ adh’ec.
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