
Grid diagrams and Khovanov homologyJean-Marie Droz and Emmanuel WagnerAbstra
tWe explain how to 
ompute the Jones polynomial of a link from one of its griddiagrams and we observe a 
onne
tion between Bigelow's homologi
al de�nition of theJones polynomial and Kau�man's de�nition of the Jones Polynomial. Consequently,we prove that the Maslov grading on the Seidel-Smith symple
ti
 link invariant 
o-in
ides with the di�eren
e between the homologi
al grading on Khovanov homologyand the Jones grading on Khovanov homology. We give some eviden
es for the truthof the Seidel-Smith 
onje
ture.Introdu
tionUsing symple
ti
 geometry, Seidel and Smith 
onstru
ted an invariant of oriented linksin S3 [10℄. The Seidel-Smith invariant of an oriented link L is de�ned as the homology
Kh∗symp(L) of a 
hain 
omplex asso
iated to L. The homologi
al grading of this 
hain
omplex is denoted by P . They also 
onje
tured that this invariant is isomorphi
 tothe Khovanov link homology Kh∗,∗(L):Conje
ture (Seidel and Smith). For all k ∈ Z,

Khk
symp(L) ∼=

⊕

(i, j) ∈ Z2

i− j = k

Khi,j(L),where i is 
alled the Khovanov homologi
al grading and j the quantum grading.Manoles
u showed [5℄ that the generators of the Seidel-Smith 
hain 
omplex are inone-to-one 
orresponden
e with the interse
tion points between homology represen-tative arising in Bigelow's 
onstru
tion of the Jones polynomial [1℄. Moreover, this
orresponden
e allows us to endow the Seidel-Smith generators with Bigelow's Jonesgrading J . Supporting Seidel-Smith 
onje
ture, it has been observed by Manoles
uthat there is, on small examples, enough generators in the Bigelow 
onstru
tion tohave a 
omplex generated by them with homology the Khovanov homology (takinginto a

ount the gradings).The purpose of the present arti
le is to introdu
e a di�erential on the gradedfree abelian group generated by the Bigelow interse
tion points, also 
alled Bigelow'sgenerators. This aim is a
hieved by proving that there is an inje
tion of Bigelow'sgenerators into enhan
ed Kau�man states [4, 11℄. In other words, we will see theSeidel-Smith generators as a subset of the generators of the Khovanov 
hain 
omplex.Moreover, we prove that, as expe
ted, the gradings verify P = i− j and j = J . Ourmain theorem is:Theorem 1. There exists a di�erential δ on the free abelian group B generated byBigelow's interse
tion points, that respe
ts J , in
reases P by 1 and su
h that the 
hain
omplex (B, δ) has homology the Khovanov homology.1



Our di�erential on the free graded abelian group generated by Bigelow's generatorsgives a 
omplex homotopi
 to the 
ombinatorially de�ned 
omplex used to 
omputeKhovanov homology [4℄. This gives strong supporting eviden
e for the Seidel-Smith
onje
ture by generalizing Manoles
u's observation. The main result remains true forodd Khovanov homology [8℄, see Theorem 8.The te
hniques used below are of intrinsi
 interest. Namely, we develop a 
om-binatorial des
ription of the Jones polynomial and of Khovanov homology in termsof re
tangular diagrams (see Se
tion 1). In parti
ular, our result gives an alternativeproof of the equivalen
e of Bigelow's de�nition of the Jones polynomial. In addition,grid diagrams appear in the 
ombinatorial des
ription of link Floer homology [6℄. Thisnew des
ription will be used in future work to investigate the relation between Kho-vanov type homologies and Heegaard-Floer type homologies (see e.g. [7, 9, 3℄).Outline. In the �rst se
tion, we introdu
e all de�nitions and notations ne
essaryto 
ompute the Jones polynomial from a grid diagram. In the se
ond se
tion, we
onstru
t an inje
tion of Bigelow's generators into enhan
ed Kau�man's states. Inthe third se
tion, we prove relations between the gradings and in the last se
tion weprove our main theorem.Aknowledgements. We wish to thank Anna Beliakova for interesting dis
us-sions and pointing to us the arti
le of Manoles
u. The present arti
le would not existwithout the kind en
ouragements of Benjamin Audoux.1 De�nitions and notations1.1 Grid diagrams and linksA grid diagram of size n ∈ N−{0, 1} is a (n×n)−grid whose squares may be de
oratedby either an O or an X so that ea
h 
olumn and ea
h row 
ontains exa
tly one O andone X . The number n is 
alled the 
omplexity of the grid diagram. Following [6℄, wedenote by O the set of O's and X the set of X 's. The X 's and the O's are 
alled thepun
tures of the grid diagram.From any grid diagram, one 
an 
onstru
t an oriented link diagram. For thispurpose, one should join the X and the O in ea
h 
olumn by a verti
al segmentand the O to the X in ea
h row by an horizontal segment that passes under all theverti
al segments. We 
hoose the orientation to be from the O's to the X 's on thehorizontal lines and from the X 's to the O's on the verti
al lines. This produ
es aplanar re
tangular diagram for an oriented link in S3. Any oriented link in S3 admitsa planar re
tangular diagram [2℄. An example is shown in Figure 1.1.2 The set G of the Bigelow's interse
tion pointsLet D be a planar re
tangular diagram of 
omplexity n. For ea
h verti
al segment letus draw an oriented 
urve whi
h winds 
lo
kwise around the pun
ture at the top ofthe segment and 
ounter
lo
kwise around the pun
ture at the bottom of the segment.The oriented 
urves obtained are 
alled �gure-eights. The �gure-eights are very narrowand as short as possible. We assume that the �gure-eights interse
t transversally andat most twi
e the horizontal segments, do not interse
t ea
h other and have onlyone transversal self-interse
tion. We denote by G the set of unordered n-tuples of2



Figure 1: Grid diagram and planar re
tangular diagram for the trefoilinterse
tion points between horizontal segments and (verti
al) �gure-eights, su
h thatea
h (verti
al) �gure-eight and ea
h (horizontal) segment 
ontains exa
tly one point.We denote by Z the set of interse
tion points between �gure-eights and horizontalsegments. We de�ne x ∈ G (o ∈ G, respe
tively) as the set of points of Z that arenearest to theX 's (the O's, respe
tively), see Figure 2 for an example. To ea
h element
g ∈ G, one 
an asso
iate a unique n-tuple, g = (g1, . . . , gn) in whi
h gi (i = 1, . . . , n)is the X , O or 
rossing nearest to gi.

Figure 2: Oriented �gure-eights and parti
ular elements x and o of G1.3 Gradings on GThree gradings on G will be de�ned. We de�ne P : G → Z as follows. Figure-eights areoriented as in Figure 2. Ea
h z ∈ Z is given an integer p(z): +1 if the part of the �gure-eight on whi
h z sits is oriented upward, 0 otherwise. Given g = (z1, . . . , zn) ∈ G,
P (g) = p(z1) + · · · + p(zn). For example, in Figure 2, P (x) = 2 and P (o) = 2.Given �nite sets of points A and B in the real plane, we de�ne I(A,B) to be thenumber of pairs (a1, a2) ∈ A and (b1, b2) ∈ B su
h that a1 < b1 and a2 < b2. Thegrading T : G → Z is de�ned by T (g) = I(g, g), for g ∈ G.We de�ne a relative grading Q on G. Consider two elements g = (g1, . . . , gn) and
h = (h1, . . . , hn) in G. To de�ne the di�eren
e Q(g) − Q(h), we 
onsider the loop
γ(g, h) in the 
on�guration spa
e of n points in R2 de�ned as follows. We start at g,go along the horizontal segments to h, then go ba
k along the verti
al �gure-eights to
g. We 
an also see γ(g, h) as a family of 
losed immersed oriented 
urves in R2. Then
Q(g)−Q(h) is de�ned to be the sum of the winding numbers of these 
losed immersed3




urves around the X 's and the O's. In other words, for ea
h X and O, we 
ountalgebrai
ally the number of times ea
h immersed 
urve goes around the pun
ture: +1for ea
h time a 
urve goes around a pun
ture 
ounter
lo
kwise and −1 for ea
h timea 
urve goes around a pun
ture 
lo
kwise and we take the sum over all 
urves and allpun
tures as relative grading. We de�ne the absolute grading Q by setting Q(x) = 0.1.4 Normalization of the gradings and the Jones polynomialWe introdu
e two 
lassi
al quantities asso
iated to an oriented link diagram D (andhen
e, to an oriented planar re
tangular diagram). Given an oriented link diagram D,we resolve all the 
rossings of D as in Figure 3, we obtain a disjoint union of oriented
Figure 3: Oriented resolution
ir
les embedded in R2. We 
all these 
ir
les the Seifert 
ir
les of D. The rotationnumber of D, denoted by rot(D), is the sum of the 
ontributions of the 
ir
les. The
ontribution of a Seifert 
ir
le is +1 if it is oriented 
ounter
lo
kwise and −1 otherwise.Given a 
rossing c of an oriented link diagram D, we de�ne w(c) as in Figure 4. Wede�ne the writhe w(D) of D,
w(D) =

∑

c crossings of D

w(c).We denote by n+ the number of positive 
rossings and by n− the number of negative
rossings of D. We have w(D) = n+ − n−.
Negative 
rossing c, w(c) = −1 Positive 
rossing c, w(c) = +1Figure 4: CrossingsWe de�ne the Jones grading J and the homologi
al grading P . Given a planarre
tangular diagram D, for an element g ∈ G we set

J(g) = 2(T (g)−Q(g)) − 2T (x) + rot(D) + w(D) and
P (g) = P (g) − P (x) − rot(D) − w(D).We prove below that the Jones polynomial of an oriented planar re
tangular dia-gram D 
an be written as:

V (D)(q) =
∑

g∈G

(−1)
P (g)

qJ(g). (1)
4



Figure 5: From a re
tangular diagram to a braid 
losure2 Bigelow's generators and enhan
ed Kau�man states2.1 From plat 
losures to re
tangular diagramsEquation (1) is a simple reformulation of Bigelow's homologi
al de�nition of the Jonespolynomial. In [1℄, Bigelow 
omputes the Jones polynomial of a link represented as theplat 
losure of a braid. Our set G is seen in the setting of Bigelow's de�nition as theset of interse
tion points between a 
y
le in homology represented by the �gure-eightsand another 
y
le represented by the horizontal segments.In [5℄ (Se
tion 3, page 15 and 16), Manoles
u explains how the plat 
losure of abraid 
an be given as a �attened braid diagram. A re
tangular diagram 
an easilybe transformed into a �attened braid diagram. Starting with a planar re
tangulardiagram in the plane with �gure-eights drawn, we apply a di�eomorphism of theplane sending all horizontal segments of the re
tangular diagram to 
onse
utive non-interse
ting segments on a line, see Figure 5. We obtain a �attened braid diagram.Our de�nitions of the di�erent gradings are obtained by �pulling ba
k� the gradingsoriginally de�ned by Bigelow along the di�eomorphism de�ned above. Noti
e that weuse the notations and normalizations of Manoles
u.2.2 The inje
tion φ from Bigelow's generators to enhan
edKau�man statesFix an oriented re
tangular diagram D, we 
onstru
t a bije
tion between the set Gand a subset of the enhan
ed Kau�man states of an oriented link diagram. Given anunoriented link diagram D, an enhan
ed Kau�man state is a 
hoi
e of one resolutionfor ea
h 
rossing of D (see Figure 6), together with a 
hoi
e of orientation on everyresulting 
ir
le, see Figure 7 for an example. We 
all a 
hoi
e of resolution for ea
h
rossing of D a resolution of D. We de�ne K to be the set of enhan
ed Kau�manstates.
Figure 6: Kau�man resolutionsConsider an oriented planar re
tangular diagram D, we de�ne H to be the set ofenhan
ed Kau�man states asso
iated to the underlying unoriented link diagram su
h5



Figure 7: Example of an enhan
ed Kau�man statethat around ea
h 
rossing, the ar
s 
oming from the resolutions are oriented as in oneof the 
on�gurations depi
ted in Figure 8.
Figure 8: Allowed orientations around a resolution in an enhan
ed Kau�-man stateNoti
e that the enhan
ed Kau�man states that are not in H are those for whi
hat least near one 
rossing the orientation is as in Figure 9.
Figure 9: Forbidden orientations around a resolution in an enhan
edKau�man stateLet D be an oriented planar re
tangular diagram, let g = (g1, . . . , gn) ∈ G. Weexplain how to asso
iate to g an element φ(g) ∈ H, see e.g. Figure 11. Thinkingof a planar re
tangular diagram D as a set of horizontal and verti
al segments, we
an subdivide all the segments in D at the 
rossings of D to obtain a set of smallersegments that we denote by seg(D). To an element g ∈ G 
orresponds an orientationof the segments of seg(D) by the following two rules:
• A verti
al segment s is oriented upward when the interse
tion point of g nearestto the line 
ontaining s is lower than s. It is oriented downward otherwise.
• An horizontal segment s is oriented leftward when the interse
tion point of gnearest to the line 
ontaining s is at the left of s. It is oriented rightwardotherwise.This means that around an interse
tion point of g the orientation of seg(D) lookslike in Figure 10. See the Figure 11, the diagram in the middle for an another example.We obtain the enhan
ed Kau�man state φ(g) from the orientation on seg(D) byspe
ifying a resolution of ea
h 
rossing of D. The orientation on the 
ir
les of φ(g)being indu
ed in the obvious way by the orientation on seg(D). For a 
rossing c, ifthere is no interse
tion point of g near c, we resolve c in the only way that is 
oherentwith the orientation on seg(D) (see Figure 3). If there is an interse
tion point gi of gin c, then the resolution depends on the position of gi. There are four possible 
ases6



Figure 10: Orientation near a gi

Figure 11: An element of G, the orientation it indu
es on seg(D) and its
orresponding enhan
ed Kau�man state φ(g)and Figure 12 des
ribes how to resolve in ea
h 
ase. Sin
e the orientation on seg(D)is 
oherent with our 
hoi
e of resolutions, the fun
tion g −→ φ(g) is well de�ned.

Figure 12: Resolution near a giTheorem 2. Let D be an oriented planar re
tangular diagram. The appli
ation φ :
g 7→ φ(g) de�nes a bije
tion between G and H.Proof. We de�ne a map ψ from H to G, see Figure 13 for an example. Given anenhan
ed Kau�man state h in H, 
onsider the orientation indu
ed by h on seg(D).We 
laim that on a verti
al segment of D, there is at most one swit
h of orientationof the kind shown in Figure 14. This follows from the fa
t that if there were two, thenbetween them, there would be one swit
h of the type depi
ted in Figure 15, whi
h isimpossible sin
e enhan
ed Kau�man state in H do not 
ontain resolutions oriented asin Figure 9. A similar argument proves that, on ea
h horizontal segment, there is atmost one swit
h of orientation (of the allowed type). It follows that one 
an asso
iateto an element h ∈ H, a n-tuple ψ(h) of X 's, O's or 
rossings, su
h that for any g ∈ G,7



Figure 13: Orientation indu
ed on D by an enhan
ed Kau�man stateand asso
iated element of G
Figure 14: Swit
h of orientation

Figure 15: Forbidden swit
h of orientation
g = ψ(h) implies that g and h indu
e the same orientation on seg(D). By using Figure12, we repla
e 
rossings in ψ(h) by elements of Z a

ording to the orientations of the
ir
les around the 
rossing and repla
e pun
tures in ψ(h) by their nearest point in Z.We obtain a n-tuple ψ(h) ∈ G. Sin
e 
learly φ and ψ are inverses, φ de�nes a bije
tionbetween G and H.3 Gradings3.1 Khovanov homologi
al grading and quantum gradingWe introdu
e two gradings i and j on H. By the previous theorem, they indu
e twogradings on G. Given an element h ∈ H, 
onsider the underlying resolution r(h) andde�ne i(h) to be the number of resolutions in r(h) of the type depi
ted in Figure16. Then i(h)=i(h) − n−. We de�ne j(h) = rot(h) + i(h) + n+ − 2n−. Noti
e that
J(x) = j(x). As a 
onsequen
e, we de�ne for any g ∈ G,

j(g) = j(φ(g)) = rot(φ(g)) + i(φ(g)) + n+ − 2n−,

i(g) = i(φ(g)) = i(φ(g)) − n−.We express the grading j(g) dire
tly from g des
ribed as a set of interse
tion points.More pre
isely, we de
ompose the grading j as the sum of three 
ontributions j1, j2and j3. 8



Figure 16: Resolution used in the de�nition of Khovanov homologi
algrading on HWe de�ne j1(g) to be an algebrai
 
ount on the 
orners of the re
tangular diagram.Ea
h 
orner of the re
tangular diagram has a 
ontribution of +1 or −1. Given g, j1(g)is the sum over all 
orners of these 
ontributions. For the 
ontributions of ea
h 
orners,see Figure 17 and Figure 18.
Figure 17: Corners with a 
ontribution to j1 of +1

Figure 18: Corners with a 
ontribution to j1 of −1We de�ne j2(g) to be an algebrai
 
ount on the 
rossings that are near an interse
-tion point of g. In other words, if g = (g1, . . . , gn), 
onsider g = (g1, . . . , gn). If gi ison a 
rossing, it has a 
ontribution of +1 or −1 depending on the positions of gi andof the self-interse
tion of the 
orresponding �gure-eight, see Figure 19 and Figure 20.
Figure 19: Crossings with a 
ontribution to j2 of +1We de�ne j3(g) to be an algebrai
 
ount on the 
rossings that do not have a pointof g nearby. In other words, if g = (g1, . . . , gn), 
onsider g = (g1, . . . , gn) and 
onsiderthe 
rossings where there is no gi. Ea
h of these 
rossings has a 
ontribution of +1or −1 depending on the position of the gi that is on the same �gure-eight and on theposition of the gj that is on the same horizontal segment, see Figure 21 and Figure9



Figure 20: Crossings with a 
ontribution to j2 of −122. Noti
e that j3 does not depend on the position of the self-interse
tion.
Figure 21: Crossings with a 
ontribution to j3 of +1

Figure 22: Crossings with a 
ontribution to j3 of −1From previous de�nitions, we dedu
e that, for all g ∈ G,
rot(φ(g)) =

j1(g)

4
+
j2(g)

2
and

i(g) = i(φ(g)) =
j2(g)

2
+
j3(g)

2
+
n+ − n−

2
. (2)Hen
e,

j(g) =
j1(g)

4
+ j2(g) +

j3(g)

2
+

3

2
(n+ − n−), for all g ∈ G. (3)3.2 Relations between gradingsIn this subse
tion, we prove that the gradings verify P = i− j and J = j.Theorem 3. Let D be an oriented planar re
tangular diagram. For all g ∈ G,

P (g) = i(g) − j(g).10



Proof. We denote by G′ the set of unordered n-tuples of interse
tion points betweenhorizontal segments and verti
al �gure-eights su
h that ea
h (verti
al) �gure-eight
ontains exa
tly one point. Observe that G is a subset of G′. Moreover, the gradings
j1, j2 and P on G extend in a natural way to G′. Sin
e

j(x) = rot(D) + w(D) , i(x) = 0 and P (x) = −rot(D) − w(D),we obtain
P (x) = i(x) − j(x).

Figure 23: Elementary moves11



We prove that P and i − j are equal as relative gradings. Noti
e that one 
ango from an element of G′ to another by a sequen
e of elementary moves 
hanging theposition of just one interse
tion point on one �gure-eight. It remains to 
he
k that Pand i−j 
hange by the same amount when su
h an elementary move is performed. Thedi�erent 
ases of elementary moves are presented in Figure 23. Moreover, 
ombiningEquations (2) and (3), we have
j(g) =

j1(g)

4
+
j2(g)

2
+ i(g) + w(D), for all g ∈ G.Thus, we need to prove that j1

4 + j2
2 and −P vary by the same amount when anelementary move is performed. This 
an be 
he
ked dire
tly from the pi
tures inFigure 23. Noti
e that there are a priori 16 other 
ases to 
he
k 
orresponding to
hanges of positions of the self-interse
tions of the �gure-eights in the twelve �rstelementary moves depi
ted in Figure 23, but these 
ases follow from the followingobservation: A 
hange of position of the self-interse
tion of the �gure-eight togetherwith a 
hange of position of the generator by swit
hing side if it sits between the oldand the new self-interse
tions 
hanges neither j1

4 + j2
2 nor −P , see Figure 24.

Figure 24: Change of position of a self-interse
tion point of a �gure-eightTheorem 4. Let D be an oriented planar re
tangular diagram, for all g ∈ G,
J(g) = j(g).Proof. Sin
e

j(x) = rot(D) + w(D) = J(x),it is su�
ient to prove that j and J are equal as relative gradings.

Figure 25: The two parts of the �gure-eightFor A and B two sets of interse
tion points, we de�ne I−(A,B) as the numberof pairs (a1, a2) ∈ A and (b1, b2) ∈ B su
h that a1 < b1 and a2 > b2. Given g =
(g1, . . . , gn) ∈ G, we de�ne Qfar(g) as follows:

Qfar(g) = I(g,X ∪ O) − I−(g,X ∪ O).12



We divide any �gure-eight in a positive and a negative part by 
utting it at itslowest and heighest points, Figure 25. We de�ne Qloc(g) as the number of interse
tionpoints of g on the positive side of the �gure-eight (in blue) minus the number of pointson the negative side of the �gure-eight (in red). We observe that
2P =rel Qloc. (4)(The notation =rel means that the two sides of the equation are equal up to an additive
onstant.)The relative grading Q between two generators g and h is de�ned as the totalwinding number of a set of 
losed paths around the pun
tures. This winding number ofa path 
an be 
omputed by 
ounting interse
tion points of the path with the horizontaland verti
al lines originating from all pun
tures (with some signs) and dividing by 4.Using this alternative de�nition of the winding number and examining separetely the
ontribution of the pie
es of the path on horizontal lines and on �gure-eights, we 
he
kthat 4Q(g)− 4Q(h) = 2Qloc(g)− 2Qloc(h) +Qfar(g)−Qfar(h), in other words, that,as relative gradings, 4Q =rel 2Qloc +Qfar.Let us 
all good a line either verti
al or horizontal that meets two pun
tures. We
all interse
tion points of good lines good points.Claim. We have the equality of relative gradings:

4T − j3 +
j1

2
=rel Qfar. (5)Proof. For ea
h pair of one horizontal good line and one verti
al good line, we examinethe 
ontributions of all pairs of one pun
ture or interse
tion point on the verti
al lineand one pun
ture or interse
tion point on the horizontal line to 4T , j3, j1

2 and Qfar.We 
onsider di�erent 
ases a

ording to where the two good lines interse
t. We 
he
kthat for ea
h pair of good lines, the total 
ontribution to Equation (5) from pointson the two lines are independent of the positions of the interse
tion points of g. Forexample, if the two good lines interse
t on a 
rossing of the re
tangular diagram, only
4T and j3 are a�e
ted and the 
ontribution of the interse
tion points to 4T and j3
an
el. Sin
e ea
h pun
ture or interse
tion point appears on
e on a verti
al good lineand on
e on an horizontal good line, taking the sum over all possible pairs of goodlines gives twi
e Equation 5.Using Equation (5) divided by two and the de�nition of j by Equation (3), we get

j =rel

j1

4
+ j2 + 2T −

Qfar

2
+
j1

4
.Using Equation (4) and the formulation of P in terms of j1 and j2, we have

−Qloc =rel

j1

2
+ j2.Combining the last two equations gives

j =rel 2T −
Qfar

2
−Qloc.Sin
e Qfar

2 + Qloc =rel 2Q and J =rel 2(T − Q), we dedu
e j =rel J from whi
h
j = J follows.

13



4 Relation with Khovanov homologyIn [5℄, Manoles
u noti
ed that, in the 
ase of the trefoil, a free abelian group whosegenerators are labelled by Bigelow generators and are graded a

ording to the gradingof their label, has ranks in the di�erent gradings 
ompatible with having as homol-ogy the Khovanov homology. We prove that this observation holds for any link. Forthis purpose, we start with the Khovanov 
hain 
omplex, i.e the 
hain 
omplex whosegenerators are labelled by enhan
ed Kau�man states K and eliminate all generatorslying in K \ H. We end up with a 
hain 
omplex homotopi
 to the original one, witha set of generators in one-to-one 
orrespondan
e with G. This redu
tion 
an be done
anoni
ally over Q. Over Z the redu
tion seems to depend of some arbitrary 
hoi
es.Our redu
tion to a smaller 
omplex is 
anoni
al in the following sense. Two orientedre
tangular diagrams that are sent to ea
h other by di�eomorphisms of the plane thatsend verti
al segments to verti
al segments have isomorphi
 
hain 
omplexes. Thisimplies that the 
hain 
omplex generated by Bigelow's homologi
al interse
tion pointsis 
omputable from the ambient isomorphism type of the �attenend braid diagramand is as su
h a 
andidate for a geometri
 interpretation.Proof. [of Theorem 1℄ We review a few fa
ts about Khovanov homology (for pre
isede�nitions and more [4, 11℄). The Khovanov 
hain 
omplex is a bigraded 
omplex
CKh =

⊕

i,j

C
i,j
Khwith generators asso
iated to enhan
ed Kau�man states

C
i,j
Kh =

⊕

s∈K,i(s)=i,j(s)=j

Z · s.Observe that Ci
Kh =

⊕

j∈Z
C

i,j
Kh is generated by all enhan
ed Kau�man states ob-tained by orienting the 
ir
les in a resolution r su
h that i(r) = i. Hen
e, as usual,

Ci
Kh 
an be seen as ⊕

r,i(r)=i V
⊗k(r){i + n+ − n−} where V is the two dimensionalgraded Z-module spanned by 1 and x with j(1) = 1 and j(x) = −1, k(r) is the numberof 
ir
les in the resolution r and {·} is the shift operator in homologi
al grading. One
an identify an element in V (r) = V ⊗k(r) with a 
hoi
e of orientations of the k(r)
ir
les. A 
ir
le oriented 
ounter
lo
kwise 
orresponds to a 1 and a 
ir
le oriented
lo
kwise 
orresponds to an x. Given a diagram D, with k 
rossings there are 2kresolutions of D. One 
an see these resolutions as lying on the verti
es of an hyper-
ube of dimension k. Hen
e, the ve
tor spa
es V (r) are indexed by the verti
es of thehyper
ube. Similarly, ea
h enhan
ed Kau�man state sits on a vertex of the hyper-
ube. Two enhan
ed Kau�man states are 
onne
ted by the di�erential of Khovanovhomology if and only if they are on both ends of an edge of the hyper
ube and lookaround a 
rossing like one of the 18 pairs in Figure 26. Lo
ally, all possible non-zerodi�erentials are depi
ted in Figure 26. Naturally, one would have to introdu
e signsto fully spe
ify the di�erential [4, 11℄ .We de�ne a new grading R on the Khovanov 
hain 
omplex as follows. Given anoriented link diagram D ∈ R2, 
onsider the underlying oriented 4-valent graph Γ inwhi
h ea
h 
rossing of D is repla
ed by a 4-valent vertex. Choose a point in ea
h
onne
ted 
omponent of R2 \ Γ. This produ
es a family of points (xi)i∈I , where Iis a �nite set. For an enhan
ed Kau�man state s, we de�ne R(s) to be the windingnumber of the oriented 
ir
les of s around the xi's. In Figure 26, the blue 
ross andthe green 
ross 
orrespond to xi's. 14



The six di�erentials in the �rst 
olumn of Figure 26 are 
onne
ting generatorsbelonging to K \ H. These di�erentials respe
t the grading R. In addition, the re-maining twelve other types of di�erentials stri
ly de
rease R. Therefore, the in
reasing�ltration asso
iated to the grading R is respe
ted by the di�erential of the Khovanov
omplex. As a 
onsequen
e, the set of elements of K \ H together with the part ofthe di�erential that respe
ts the grading R is a 
hain 
omplex. Moreover, this 
hain
omplex is homotopi
 to zero. This follows from the fa
t that this 
hain 
omplex is ashifted dire
t sum of hyper
ube 
hain 
omplexes, where ea
h hyper
ube 
hain 
omplexis obtained by the usual pro
edure of �attening an hyper
ube [7, p.17℄ and repla
ingevery vertex by a 
opy of Z and every arrow by +Id or −Id. Su
h an hyper
ube 
hain
omplex is 
learly homotopi
 to zero.

Figure 26: Non-zero di�erentials in Khovanov 
omplexWe state a lemma in homologi
al algebra generalizing Gaussian elimination whi
his proved in the Appendix.Lemma 5. Given a 
hain 
omplex C =
⊕

i∈Z
Ci, C δ

−→ C, δ of degree +1 su
h that
C = A ⊕ B as graded abelian group and δ =

(

a d

c b

) with A
a

−→ A, B d
−→ A,

A
c

−→ B and B b
−→ B. Suppose that (B, b) is a 
hain 
omplex homotopi
 to zero.Then, for h : C−→C of degree −1 su
h that −Id = hb+ bh, the 
hain 
omplex (C, δ)is homotopi
 to (A, a+ dhc).Theorem 1 follows from Theorem 3, Theorem 4 and Lemma 5.15



Corollary 6 (Bigelow [1℄). Given an oriented re
tangular diagram D,
V (D)(q) =

∑

g∈G

(−1)
P (g)

qJ(g)is the Jones polynomial.Corollary 7. There exists a di�erential δ on the Q-ve
tor spa
e B generated byBigelow's interse
tion points G, that respe
ts J , in
reases P by 1 and su
h that the
hain 
omplex (B, δ) has homology the Khovanov homology. Moreover, over Q, thisdi�erential is 
anoni
al.Proof. The �rst part of the statement follows from Theorem 1. The se
ond part followsfrom the fa
t that, over Q, there is a 
anoni
al homotopy for Lemma 5. We 
onstru
tthis homotopy. The set of elements of K \H together with the part of the di�erentialthat leaves the grading R invariant is a 
hain 
omplex denoted by C. Moreover,this 
hain 
omplex is a shifted dire
t sum of hyper
ube 
hain 
omplexes, where ea
hhyper
ube 
hain 
omplex is obtained by the usual pro
edure of �attening an hyper
ubeand in this 
ase repla
ing every vertex by a 
opy of Q and every arrow by +Id or
−Id. As explained before, those hyper
ubes are null homotopi
. In parti
ular, givena de
omposition of an hyper
ube of dimension n into two hyper
ubes of dimension
n − 1, one 
an take as homotopy minus the inverse of the di�erentials between thetwo hyper
ubes of dimension n − 1. Sin
e there is n ways to split an hyper
ube ofdimension n into two hyper
ubes of dimension n − 1, there are n homotopies of thetype des
ribed above. We denote them by h1, h2, . . . , hn. Ea
h of them 
omes from a
hoi
e of splitting. We 
onsider h = 1

n

∑n

i=1 hi ; it is a homotopy to zero. Summingover all hyper
ubes 
omposing the 
hain 
omplex C, the average homotopies des
ribedabove, one obtains a homotopy to zero for the whole 
omplex C. Hen
e, over Q, thereis a 
anoni
al 
hoi
e of homotopy for the appli
ation of Lemma 5 and therefore, a
anoni
ally de�ned di�erential on the set of Bigelow's generators.Theorem 1 and Corollary 7 remain true for the odd Khovanov homology [8℄. Morepre
isely, the proof only depends on the fa
t that one 
an endow enhan
ed Kau�man'sstates with a di�erential that respe
ts the in
reasing �ltration asso
iated to the grading
R and su
h that the part of the di�erential that respe
ts the grading R is 
onne
tingelements in K \ H. The di�erential 
onstru
ted in [8℄ is up to signs the originalKhovanov di�erential. Hen
e, we also have the following theorem:Theorem 8. There exists a di�erential δ on the free abelian group B generated byBigelow's interse
tion points G, that respe
ts J , in
reases P by 1 and su
h that the
hain 
omplex (B, δ) has homology the odd Khovanov homology. Moreover, over Q,this di�erential is 
anoni
al.AppendixWe give the proof of Lemma 5.Proof. We begin by proving that (A, a+ dhc) is a 
hain 
omplex. Noti
e that δ2 = 0and b2 = 0 imply

cd = 0. (6)Moreover, δ2 = 0 also implies
a2 + dc, = 0, (7)
ad+ db = 0, (8)
ca+ bc = 0. (9)16



Hen
e,
(a+ dhc)(a+ dhc) = a2 + dhca+ adhc+ dhcdhc

= a2 + dhca+ adhc

= −dc− dhbc− dbhc

= −d(Id + hb+ bh)c

= 0.We de�ne a 
hain map f from (C, δ) to (A, a+ dhc) by the formula
f =

(

1 dh
)and a 
hain map g from (A, a+ dhc) to (C, δ) by the formula

g =

(

1
hc

)

.It is straightforward to 
he
k that fδ = (a+ dhc)f and δg = g(a+ dhc) using (6), (9),(8) and −Id = hb + bh. Moreover, we de�ne a homotopy H =

(

0 0
0 h

) going from
C to C. If follows from (6) and −Id = hb+ bh that gf − Id = Hδ+ δH . We de�ne H ′as follows: H ′ = dh3c. Let us 
he
k that gf − Id = H ′(a + dhc) + (a + dhc)H ′. Wehave

gf − Id = Id + dh2c− Id = dh2c (10)Moreover, we have
dh2c = −dhbh2c− dh2bhc

= 2dh2c+ dbh3c+ dh3bc

= 2dh2c− adh3c− dh3ca,from whi
h we dedu
e,
dh2c = dh3ca+ adh3c. (11)Hen
e 
ombining (10) and (11), we have
gf − Id = dh3ca+ adh3c.Moreover,

H ′(a+ dhc) + (a+ dhc)H ′ = dh3c(a+ dhc) + (a+ dhc)dh3c

= dh3ca+ adh3c.Referen
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