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Imagination is more important than knowledge. For knowledge
is limited to all we now know and understand, while imagination
embraces the entire world, and all there ever will be to know and
understand.

Albert Einstein (1879-1955)
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Avant-propos

Une Habilitation à diriger des recherches permet de faire le point sur les recherches effectuées depuis
l’obtention du doctorat et d’en faire une présentation synthétique et c’est bien le cas dans ce manuscrit.
En outre elle permet bien généralement d’exposer le point de vue de l’auteur sur un domaine de recherche
ce qui est moins le cas dans ce manuscrit où l’on a préferé présenter plusieurs aspects d’un domaine de
recherche révélant différentes interactions entre l’algèbre et la topologie. De manière générale, je travaille
dans le domaine maintenant communément appelé Topologie Quantique, mais pas dans une direction très
précise. Les objets que j’étudie sont de nature topologique, les nœuds, les tresses ou les surfaces mais
les techniques sont de nature algébrique, topologie algébrique, combinatoire, théorie des représentations,
méthodes catégoriques. Les travaux présentés dans ce manuscrit sont à l’intersection de l’algèbre et de la
topologie et vous trouverez ci-dessous une liste de mes publications et remarquerez que ce manuscrit ne
présente qu’une partie d’entre eux. Cette HDR est divisée en trois chapitres, chacun d’entre eux portant
sur un thème précis et le choix des publications présentées est en accord avec ceux-ci. Chaque chapitre
s’intéresse à une direction de recherche relativement précise dont je pense qu’elle mérite une attention par-
ticulière.

Le premier chapitre se préoccupe de l’étude des surfaces dans l’espace quatre dimensionnel, en lien
avec les invariants d’entrelacs classiques et quantiques. Il fait référence d’une part à mon travail en cours
avec Michael Eisermann et d’autre part à ma collaboration avec Benjamin Audoux, Paolo Bellingeri et
Jean-Baptiste Meilhan:

• Slice links and the Jones polynomial, avec Michael Eisermann, in preparation.

• Homotopy classification of ribbon tubes and welded string links, avec Benjamin Audoux, Paolo
Bellingeri and Jean-Baptiste Meilhan, math/1407.0184, accepé pour publication à Annali della Scuola
Normale Superiore.

Le second chapitre se consacre aux quotients cubiques de l’algèbre du groupe de tresses à travers mes
deux collaborations avec Ivan Marin:

• A cubic defining algebra for the Links-Gould polynomial, avec Ivan Marin, Adv. Math. 248 (2013),
1332-1365.

• Markov traces on the Birman-Wenzl-Murakami algebras, avec Ivan Marin, math/1403.4021.

Le dernier chapitre s’attache à présenter mes deux travaux les plus récents dans le domaine de la
catégorification, celui avec Pedro Vaz s’intéressant à une catégorification de l’algèbre BMW et celui avec
Agnès Gadbled et Anne-Laure Thiel sur une action catégorique du groupe de tresses affines étendu de type
A:

• A remark on BMW algebra, q-Schur algebras and categorification, avec Pedro Vaz, Canad. J. Math.
66 (2014), no. 2, 453-480.

• Categorical action of the extended braid group of affine type A, avec Agnès Gadbled and Anne-Laure
Thiel, math/1504.07596, accepté pour publication à Communications in Contemporary Mathematics.
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L’appendice présente une formulation originale du polynôme d’Alexander obtenue à la suite de mon
travail avec Jean-Marie Droz [11] et jamais publiée car à mon sens il manque une bonne application de
cette formule. Nous avons néanmoins saisi l’opportunité donnée par cette HDR pour en laisser une trace.

Les thèmes très divers développés dans les trois chapitres ont en réalité une origine commune: tous les
travaux proviennent d’une question à propos de la catégorification. Il n’y a aucune surprise concernant le
dernier chapitre qui traite directement de questions relatives à cette direction de recherche. Nous retraçons
maintenant l’historique de ces travaux.

Ma thèse de doctorat portait sur les homologies d’entrelacs de Khovanov et Rozansky [27] et la ma-
jorité des mes travaux qui ont suivi juste après restait dans ce domaine de recherche. J’étais essentiellement
intéressé par les homologies de Khovanov et de Khovanov-Rozansky en lien avec l’homologie des nœuds
de Heegaard-Floer espérant que ces catégorifications aideraient à comprendre la nature topologique des
invariants quantiques, en particulier à travers la suite spectrale conjecturale entre l’homologie de Kho-
vanov et l’homologie des nœuds de Heegard-Floer. Mon étude des homologies d’entrelacs de Khovanov et
Rozansky a suggéré l’existence d’une invariant polynomial satisfaisant une relation d’écheveaux cubique.
C’est de cette manière que j’ai commencé mon étude avec Ivan Marin des quotients cubiques de l’algèbre
du groupe de tresses, en remarquant que l’on ne savait que très peu de choses à leurs sujets. Les quotients
cubiques de l’algèbre du groupe de tresses nécessitent selon moi des recherches plus avancées car ils sont
intéressants par plusieurs aspects. A peu près à la même époque j’ai commencé à réfléchir avec Pedro Vaz
à la catégorification d’un quotient cubique particulier, l’algèbre BMW.

J’ai ensuite participé avec Benjamin Audoux, Paolo Bellingeri et Jean-Baptiste Meilhan au projet ANR
JCJC Vaskho dont un des buts était l’étude des propriétés de type fini des homologies d’entrelacs. Notre
travail commun commença suite à une rencontre à Dijon dont le but était d’introduire différentes défini-
tions des invariants de Milnor pour voir si et comment on pouvait les catégorifier. Par exemple catégorifier
l’enlacement d’une manière calculable est toujours une question ouverte. La stratégie générale est qu’il de-
vait être plus facile d’étudier des propriétés de type fini sur des catégorifications d’invariants plus simples
que directement sur les homologies d’entrelacs.

Nos discussions avec Michael Eisermann commencèrent après sa participation à une des rencontres de
l’ANR Vaskho. Notre but était de comprendre comment étendre son critère de divisibilité du polynôme
de Jones pour les entrelacs rubans à l’homologie de Khovanov. Lors d’une de nos discussions, nous réal-
isâmes que ces arguments de preuve étaient complètement locaux et nous divergèrent vers notre actuel
projet commun. La question initiale est toujours largement ouverte.

La présentation dans les chapitres diffèrent quelque peu de celle dans les papiers originaux. Certains
paragraphes ont été reproduits avec pas ou très peu de modifications. Certains papiers sont présentés dans
le même ordre que l’original [37], certains dans un ordre complètement différent [36], certains sont exposés
avec un éclairage particulier en privilégiant un aspect du papier original [2], [14], [53]... L’objectif recher-
ché dans l’exposition de chaque chapitre est d’amener aussi naturellement que possible les recherches
futures que je compte mener et qui sont présentées à la fin de chaque chapitre. Concernant justement ces
sous-sections "Work in progress, open problems and perspective", elles présentent des projets qui sont à
divers degrés d’avancement. Pour finir, j’ajouterai qu’il y a d’autres projets qui ne sont pas directement
reliés aux résultats présentés dans ce manuscrit et qui me ramèneront encore plus vers le domaine de la
catégorification et justifieront encore plus le titre de cette HDR.
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Foreword

An HDR is supposed usually to present works of the author done after the Phd, this is obviously the case
of this manuscript too, but also usually gives the author’s point of view on a subject and contains a per-
sonal survey of an area of research, this is less the case and instead we present various facets of an area of
research. In a broad sense, my area of research is known as Quantum Topology, but not in a very precise
direction. My objects of studies are of topological nature, braids, knots and surfaces and the techniques
of various algebraic natures: algebraic topology, combinatorics, representation theory and categorical con-
structions. The works presented in this manuscript reflect various interplays between topology and algebra
and you will find below a list of my papers, and see that this HDR focuses only on part of them. It is
divided in three chapters, each of them focusing on a different thematic and the choice of papers follows
from the choice of these thematics. Each of the chapter reflects one more precise direction which I believe
deserve a particular attention.

The first chapter in some sense studies surfaces in the 4-space on their own, in connection with quantum
and classical link invariants. It reports on one hand on my joint work in progress with Michael Eisermann
and on the other hand on my joint work with Benjamin Audoux, Paolo Bellingeri and Jean-Baptiste Meil-
han:

• Slice links and the Jones polynomial, with Michael Eisermann, in preparation.

• Homotopy classification of ribbon tubes and welded string links, with Benjamin Audoux, Paolo
Bellingeri and Jean-Baptiste Meilhan, math/1407.0184, accepted for publication in Annali della
Scuola Normale Superiore.

The second chapter is dedicated to cubical quotients of the braid group algebra and presents my joint
works with Ivan Marin:

• A cubic defining algebra for the Links-Gould polynomial, with Ivan Marin, Adv. Math. 248 (2013),
1332-1365.

• Markov traces on the Birman-Wenzl-Murakami algebras, with Ivan Marin, math/1403.4021.

The last chapter deals with categorifications and discuss my joint work with Pedro Vaz on a categorifi-
cation of the BMW algebra and my joint work with Agnès Gadbled and Anne-Laure Thiel on a categorical
action of the extended affine type A braid group:

• A remark on BMW algebra, q-Schur algebras and categorification, with Pedro Vaz, Canad. J. Math.
66 (2014), no. 2, 453-480.

• Categorical action of the extended braid group of affine type A, with Agnès Gadbled and Anne-Laure
Thiel, math/1504.07596, accepted for publication in Communications in Contemporary Mathemat-
ics.

The appendix presents an original description of the Alexander polynomial which was obtained as a
sequel to the joint work with Jean-Marie Droz [11] and was never published because I had no good appli-
cations of this formula. We take the chance to include it in this manuscript to keep track.
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The not completely related topics of the three chapters have in fact something in common: all the works
origin in a question about categorification. This is no surprise for the last chapter since in this case the re-
sults deal with categorification. Let me recall here the history of these works.

My PhD thesis was about the link homology theory constructed by Khovanov-Rozansky [27] and most
of the work I have done shortly afterwards was in this area of research. I was mostly interested in Khovanov
and Khovanov-Rozansky link homologies with a view toward knot Heegaard-Floer homology hoping that
these categorifications could help to understand the topological nature of the quantum invariants, in par-
ticular through the conjectural spectral sequence between Khovanov homology and knot Heegaard-Floer
homology. My studies of the Khovanov-Rozansky link homologies suggested the existence of a polyno-
mial invariant satisfying a cubical skein relation. This is how I started with Ivan Marin our studies of
cubical quotients of the braid group algebra, noticing that not much was known about them. The cubical
quotients of the braid group algebra really deserve further investigations, and are interesting from various
perspectives. At the same time, I started to think with Pedro Vaz about categorification of a particular
cubical quotient of the braid group algebra, namely the BMW algebra.

Afterwards I was involved in the JCJC ANR project Vaskho with Benjamin Audoux, Paolo Bellingeri
and Jean-Bapstiste Meilhan. One of its goals was to investigate connections between finite type properties
and link homology. The joint project started during one of our meetings in Dijon whose aim was to in-
troduce various definitions of the Milnor invariants to see if/how one could categorify them. For instance,
categorifying linking numbers in a computable fashion is still an open question. The general strategy was
that it would be easier to prospect finite type properties on categorification of simpler invariants than on the
link homology directly.

We started discussing with Michael Eisermann after he participated in a joint meeting of the ANR
Vaskho. Our goal was to understand how the divisibility property of the Jones polynomial for ribbon links
reflects in the Khovanov homology. During one of our discussions we realized his arguments of proof were
completely local and we diverged to the present common work. The initial question is still completely open.

Let me add here a few words about the content of the chapters compared to the original papers. Certain
paragraphs are reproduced from the papers with little or no changes. Some papers are presented here in
the original order [37], some are in a completely different order [36], some others have a particular expo-
sition that will shed more light on one aspect of the original paper [2], [14], [53]... The general goal of
the exposition inside each chapter was to present the papers with a view toward the further developments I
plan to investigate and which are presented at the end of each chapter. Concerning these subsections "Work
in progress, open problems and perspective" they present projects which are at very different stages of in-
vestigations. Let me add also that some projects are not developed in this manuscript because not directly
connected to the results presented here and will bring me even more back into the realm of categorification
and hopefully will explain even more the title of this HDR.
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Chapter 1

Surfaces in four-space: from links to
link-homotopy

1.1 Sliceness obstructions from the Jones polynomial.
In a joint work with Eisermann, we extend his previous result on ribbon links and the Jones polynomial to
the case of slice links. Along the way, we prove an extension of his result to a tangle setting and prove a
link version of the famous result of Fox stating that slice knots are stably ribbon, i.e. for each slice knot
there exists a ribbon knot such that the connected sum of the two is ribbon.

Recall that a link with n components is called ribbon if it bounds n immersed disks with only ribbon
singularities. We describe in Figure 1.1 the local model of this type of singularities. A link with n compo-
nents in the three sphere is said to be slice if it bounds n disjoint smooth disks in the four ball. Recall also
that ribbon implies slice. The converse is an open problem known as the Slice-Ribbon conjecture

Figure 1.1: Local model for a ribbon singularity

We obtain the following theorem:

Theorem 1.1. For every slice link L ⊂ S 3 with n components, the unnormalized Jones polynomial V(L) ∈
Z[q±1] is divisible by the Jones polynomial V(©n) = (q + q−1)n of the trivial link.

Eisermann established the theorem for ribbons links, hence, this result is from some point of view dis-
appointing since it indicates that one cannot use this criterion to find a counterexample to the Slice-Ribbon
conjecture. From another point of view it is one of the first interplay between classical quantum invariants
and topology. Moreover the proof indicates a strategy to find a criterion which will obstruct sliceness but
not necessarly ribboness. We will expand on this at the end of the section.

The proof of this theorem has two main ingredients: firstly we extend the result of Eisermann to the
case of ribbon tangles and secondly we use an extension of the slice is stably ribbon criterion to the almost
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pure tangle case and hence to the link case.

We obtain in particular the following result:

Theorem 1.2. Consider an oriented link L = L1 ∪ · · · ∪ Ln in R3 with numbered components. If L is slice
then there exists a ribbon link L′ = L′1∪· · ·∪L′n such that any connected sum L]L′ = (L1]L′1)∪· · ·∪(Ln]L′n)
is ribbon.

This theorem is a consequence of the next one. We say that a tangle T ∈ T (2n, 2n) with 2n endpoints
at the bottom and 2n endpoints at the top is almost pure if it is a string link up to multiplication by a braid
generator σ2i+1 with i = 0, . . . , n − 1. We say that an almost pure tangle T ∈ T (2n, 2n) is ribbon if its plat
closure L = cl(T ) is a ribbon link and similarly it is slice if its plat closure L = cl(T ) is a slice link. Notice
that the fact that it is almost pure implies that its plat closure has exactly n components.

Theorem 1.3. Let T ∈ T (2n, 2n) be an almost pure tangle. If T is slice, then there exists a almost pure
ribbon tangle T ′ ∈ T (2n, 2n) such that their product T · T ′ is ribbon.

A careful observation of the original proof of Eisermann’s divisibility criterion for the Jones polynomial
of ribbon links shows that it is completely local and can be immediately adapted to almost pure ribbon
tangles. The slogan is then as follows: a sum of terms could be divisible whereas each individual term may
not. We prove in fact that, giving a ribbon link with n components presented as a closure of an almost pure
ribbon tangle, and expanding the tangle in the Kauffman bracket skein module and hence expressing it in
the usual Temperley-Lieb basis, each individual term in this expression is divisible. This result also applies
now to knots through the cabling procedure. Recall here that Eisermann’s original divisibility criterion was
obviously uneffective for knots and that in addition Habiro proved that the divisibility criterion was also
satisfied by boundary links which prevents to use a cabling procedure to extend it to knots since cable links
of knots are obviously boundary links. The problem is now computational to make it efficient for knots.
We checked by computer using a three cable that the figure-eight knot is not ribbon, nor slice, but for this
knot, the determinant already obstructs sliceness. We are looking now for better examples.

1.2 Ribbon tubes in the four-space.
In this section, we consider ribbon tubes and ribbon torus-links, which are natural 2-dimensional analogues
of string links and links, respectively. We show how ribbon tubes naturally act on the reduced free group,
and how this action classifies ribbon tubes up to link-homotopy. Let us mention here that we do not expand
at all about the proofs and the techniques of proof used in this work. All the proofs rely on the interplay
between topology and some combinatorial theories: welded knot theory and Gauss diagrams techniques.
We choose to present here only the topological output.

First fix some notations. Let I be the unit closed interval. Let ~1, n� be the set of integers between 1
and n. We fix n distinct points {pi}i∈~1,n� in I. For each i ∈ ~1, n�, we choose a disk Di in the interior of
the 2–ball B2 = I × I which contains the point pi, seen in

{ 1
2
}
× I, in its interior. We furthermore require

that the disks Di, for i ∈ ~1, n�, are pairwise disjoint. We denote by Ci := ∂Di the oriented boundary of
Di. We consider the 3–ball B3 := B2 × I and the 4–ball B4 = B3 × I. For m a positive integer and for each
submanifold X ⊂ Bm � Bm−1 × I, we set the notation

• ∂0X = X ∩
(
Bm−1 × {0}

)
;

• ∂1X = X ∩
(
Bm−1 × {1}

)
;

• ∂∗X = ∂X \ (∂0X t ∂1X);

•
∗

X = X \
(
∂∗X ∪ ∂(∂0X) ∪ ∂(∂1X)

)
.

By a tubular neighborhood of X, we will mean an open set N such that N ∩ B̊m is a tubular neighborhood
of X̊ in B̊m and ∂εN is a tubular neighborhood of ∂εX in ∂εBm for both ε = 0 and 1.
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1.2.1 Ribbon tubes and their homology
Definitions

Definition 1.1. A ribbon tube is a locally flat embedding T = t
i∈~1,n�

Ai of n disjoint copies of the oriented

annulus S 1 × I in
∗

B4 such that

• ∂Ai = Ci × {0, 1} for all i ∈ ~1, n� and the orientation induced by Ai on ∂Ai coincides with the one of
Ci;

• there exist n locally flat immersed 3–balls ∪
i∈~1,n�

Bi such that

– ∂∗Bi = Åi for all i ∈ ~1, n�;

– ∂εBi = Di × {ε} for all i ∈ ~1, n� and ε ∈ {0, 1};

– the singular set of
n
∪
i=1

Bi is a disjoint union of so-called ribbon singularities, ie flatly transverse

disks whose preimages are two disks, one in
n
∪
i=1

B̊i and the other with interior in
n
∪
i=1

B̊i, and with

boundary essentially embedded in
n
t
i=1
∂∗Bi =

n
t
i=1

Åi.

We denote by rTn the set of ribbon tubes up to isotopy fixing the boundary circles. It is naturally
endowed with a monoidal structure by the stacking product T • T ′ := T ∪

∂1T=∂0T ′
T ′, and reparametrisation,

and with unit element the trivial ribbon tube 1n := t
i∈~1,n�

Ci × I.

Note that this notion of ribbon singularity is a 4–dimensional analogue of the classical notion of ribbon
singularity introduced by R. Fox in [13] and that we discussed in the previous subsection. Similar ribbon
knotted objects were studied, for instance, in [55], [56] and [23], and a survey can be found in [51].

Remark 1.1. There are two natural ways to close a ribbon tube T ∈ rTn into a closed (ribbon) knotted
surface in the 4–space. First, by gluing the disks t

i∈~1,n�
Di × {0, 1} which bound ∂0T and ∂1T, and gluing

a 4–ball along the boundary of B4, one obtains a n-component ribbon 2–link [54], which we shall call
the disk-closure of T . Second, by gluing a copy of the trivial ribbon tube 1n along T , identifying the pair
(B3×{0}, ∂0T ) with (B3×{1}, ∂11n) and (B3×{1}, ∂1T ) with (B3×{0}, ∂01n), and taking a standard embedding
of the resulting S 3 × S 1 in S 4, one obtains a n-component ribbon torus–link [46], which we shall call the
tube-closure of T . This is a higher dimensional analogue of the usual braid closure operation.

An element of rTn is said to be monotone if it has a representative which is flatly transverse to the
lamination ∪

t∈I
B3 × {t} of B4.

We denote by rPn the subset of rTn whose elements are monotone.

Proposition 1.1. The set rPn is a group for the stacking product.

Homology groups

Let T be a ribbon tube with tube components t
i∈~1,n�

Ai.

Since T is locally flat in B4, there is a unique way, up to isotopy, to consider, for all i ∈ ~1, n�, disjoint
tubular neighborhoods N(Ai) � D2 × S 1 × I for Ai, with Ai = {0} × S 1 × I ⊂ N(Ai). We denote by
N(T ) := t

i∈~1,n�
N(Ai) a reunion of such tubular neighborhoods and by W = B4 \

∗

N(T ) the complement of its

interior in B4.
For each i ∈ ~1, n�,

• the ith homological meridian ci of T is the homology class in H1(W) of ∂D2 × {s} × {t} ⊂ ∂N(Ai) for
any (s, t) ∈ S 1 × I;
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• the ith homological meridional torus τi of T is the homology class in H2(W) of ∂D2×S 1×{t} ⊂ ∂N(Ai)
for any t ∈ I.

As a direct application of the Mayer–Vietoris exact sequence, we obtain:

Proposition 1.2. The homology groups of W are H0(W) = Z, H1(W) = Zn = Z
〈
ci

∣∣∣ i ∈ ~1, n�
〉
, H2(W) =

Zn = Z
〈
τi

∣∣∣ i ∈ ~1, n�
〉
, H3(W) = Z and Hk(W) = 0 for k ≥ 4.

1.2.2 Broken surface diagrams and fundamental group
Links in 3–space can be described using diagrams, which are their generic projection onto a 2–dimensional
plane with extra decoration encoding the 3–dimensional information. Similarly, it turns out that ribbon
knotted objects, which are surfaces in 4–space, can be described using their generic projection onto a
3–space; this leads to the following notion of broken surface diagram.

Broken surface diagrams

Definition 1.2. A broken surface diagram is a locally flat immersion S of n oriented annuli t
i∈~1,n�

Ai in
∗

B3

such that

• ∂Ai = Ci × {0, 1} for all i ∈ ~1, n� and the orientation induced by Ai on ∂Ai coincides with that of Ci;

• the set Σ(S ) of connected components of singular points in S consists of flatly transverse circles in
n
∪
i=1

Åi.

Moreover, for each element of Σ(S ), a local ordering is given on the two circle preimages. By convention,

this ordering is specified on pictures by erasing a small neighborhood in
n
∪
i=1

Åi of the lowest preimage (see

Figure 1.2). Note that this is the same convention which is used for usual knot diagrams.

:
dark

preimage <
light

preimage
66mmmmmm

((QQQQQQ

:
light

preimage <
dark

preimage

Figure 1.2: Local pictures for a singular circle in a broken surface diagram

Definition 1.3. A broken surface diagram S is said to be symmetric if and only if,

1. for each of element of Σ(S ), one of the preimages is essential in
n
∪
i=1

Ai and the other is not;
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2. there is a pairing Σ(S ) =: t
r
{cr

1, c
r
2} such that, for each r, the essential preimages of cr

1 and cr
2

i. are respectively lower and higher than their non essential counterparts;

ii. bound an annulus in
n
∪
i=1

Åi;

iii. this annulus avoids Σ(S ).

As a consequence of the remark below, a symmetric broken surface diagram looks locally like in Figure
1.3.

outside annuli

inside annulus

Figure 1.3: A local picture for paired singular circles in symmetric broken surface diagrams

Remark 1.2. For a symmetric broken surface diagram S , the essential preimages of Σ(S ) cut the annuli
of S into smaller annular pieces. Moreover, condition (1) above implies that there is a well defined notion
of inside/outside for each annulus of S . Then, it follows from condition (2ii.) that the annular pieces
between two paired essential preimages are exactly the portions of S which are inside S . Accordingly, we
called these annular pieces inside annuli, and the other pieces outside annuli (see Figure 1.3). Condition
(2iii.) implies furthermore that both boundary components of an inside annulus belongs to the same outside
annulus.

Let T be a ribbon tube, and consider a projection B4 → B3 which is generic with respect to T . Then
the image of T in B3 has singular locus a union of double points arranged in flatly transverse circles, and
for each double point, the preimages are naturally ordered by their positions on the projection rays. This
suggests that broken surface diagrams can be thought of as 3–dimensional representations of ribbon tubes.
This is indeed the case, as stated in the next result, which is essentially due to Yanagawa.

Lemma 1.1. [56] Any generic projection of a ribbon tube from B4 into B3 is a broken surface diagram.
Conversely any broken surface diagram is the projection of a ribbon tube.

More specifically, we have the following.

Lemma 1.2. [55, 23] Any ribbon tube can be represented by a symmetric broken surface diagram.

Fundamental groups and Wirtinger presentation

Let T be a ribbon tube with tube components t
i∈~1,n�

Ai and define N(T ) := t
i∈~1,n�

N(Ai) and W as in the

previous subsection. We also consider a global parametrization (x, y, z, t) of B4, which is compatible with
B4 � B3 × I � B2 × I × I near ∂0B4 and ∂1B4, and such that the projection along z maps T onto a symmetric
broken surface diagram S . We also fix a base point e := (x0, y0, z0, t0) with z0 greater than the highest
z–value taken on N(T ).

Notation 1. We set π1(T ) := π1(W) with base point e.
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Elements of the fundamental group: For every point a := (xa, ya, za, ta) ∈ T , we define ma ∈ π1(T ), the
meridian around a, as τ−1

a γaτa where

• τa is the straight path from e to ã := (xa, ya, z0, ta);

• γa is the loop in W, unique up to isotopy, based at ã and which enlaces positively T around a.

In particular, we define:

Notation 2. For each i ∈ ~1, n� and ε ∈ {0, 1}, we denote by mε
i the meridian in π1(T ) defined as maεi for

any aεi ∈ Ci × {ε}. If ε = 0, we call it a bottom meridian, and if ε = 1, we call it a top meridian; see the
left-hand side of Figure 1.4 for an example of a bottom meridian.

Note that, for any ε ∈ {0, 1} and any choice of aεi , the fundamental group of ∂εW based at (x0, y0, z0, ε)
can be identified with the free group Fn =

〈
mε

i

∣∣∣ i ∈ ~1, n�
〉
.

B3 × {0}

B3 × {1}

γa0
i

e

τa0
i

λi

B3 × {0}

B3 × {1}

c1i

c0i

m0
i ’s

e

meridian m0
i longitude λi

Figure 1.4: Examples of meridians and longitude

Now, we define the notion of longitude for T as follows. First, we fix two points e0
i ∈ ∂0N(Ai) and

e1
i ∈ ∂1N(Ai) on each extremity of the boundary of the tubular neighborhood of Ai. A longitude for Ai is

defined as the isotopy class of an arc on ∂N(Ai) running from e0
i to e1

i , see the right-hand side of Figure 1.4
for an example. Since N(Ai) is homeomorphic to D2 × S 1 × I, we can note that

∂N(Ai) =
(
S 1 × S 1 × I

)
∪

(
D2 × S 1 × {0}

)
∪

(
D2 × S 1 × {1}

)
,

so that the choice of a longitude for Ai is a priori specified by two coordinates, one for each of the two
S 1–factors in S 1 × S 1 × I. On one hand, the first S 1–factor is generated by the meridian mi, so that the
first coordinate is given by the linking number with the tube component Ai. It can be easily checked, on
the other hand, that two choices of longitude for Ai which only differ by their coordinate in the second
S 1–factor are actually isotopic in W.

Definition 1.4. For each i ∈ ~1, n�, we call ith longitude of T the isotopy class of an arc on ∂N(Ai), running
from e0

i to e1
i , and closed into a loop with an arc c0

i ∪ c1
i defined as follows. For ε ∈ {0, 1}, we denote by ẽεi

the point above eεi with z–coordinate z0; then cεi is the broken line between e, ẽεi and eεi . See the right-hand
side of Figure 1.4.

In the following, we give a presentation for π1(T ) in terms of broken surface diagrams.
Let S be a symmetric broken surface diagram representing T . According to the notation set in Remark

1.2, we denote by Out(S ) the set of outside annuli of S and by In(S ) the set of inside annuli. For each
β ∈ In(S ), we define
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• α0
β ∈ Out(S ) the outside annulus which contains ∂β;

• Cβ the connected component of β ∩ α0
β which is closer to ∂0T , according to the co–orientation order

defined after definition 1.1;

• α−β ∈ Out(S ) the outside annulus which has Cβ as a boundary component;

• α+
β ∈ Out(S ) the outside annulus which has

(
β ∩ α0

β

)
\Cβ as a boundary component;

• εβ = 1 if, according to the local ordering, the preimage of Cβ in β is higher than the preimage in α0
β,

and εβ = −1 otherwise.

See Figure 1.5 for an example.

α0
β

α−
β

α+
β

∂1S

β

� // +1

∂1S

� // −1

Figure 1.5: Signs associated to inside annuli

Proposition 1.3. [54, 56] Let T be a ribbon tube and S any broken surface representing it, then

π1(T ) �
〈
Out(S )

∣∣∣ α+
β = (α0

β)
εβ
α−β (α0

β)
−εβ for all β ∈ In(S )

〉
.

In this isomorphism, α ∈ Out(S ) is sent to ma, where a is any point on α close to ∂α.

Corollary 1.1. The group π1(T ) is generated by elements {ma}a∈T , and moreover, if a ∈ Ai for some
i ∈ ~1, n�, then ma is a conjugate of mε

i for both ε = 0 or 1.

Reduced fundamental group

In this section, we define and describe a reduced notion of fundamental group for T . Indeed, Corollary 1.1
states that π1(T ) is normally generated by meridians mε

1, · · · ,m
ε
n for either ε = 0 or 1. Moreover, since top

meridians are also conjugates of the bottom meridians and vice versa, we can define the following without
ambiguity:

Definition 1.5. The reduced fundamental group Rπ1(T ) of T is defined as the smallest quotient of π1(T )
where each bottom (or top) meridian commutes with all its conjugates.
For convenience , we also denote Rπ1(∂εW) by Rπ1(∂εT ), for ε ∈ {0, 1}.

It is a consequence of the description of H∗(W) given in Proposition 1.2 that, for ε ∈ {0, 1}, the inclusion
ιε : ∂εW ↪→ W induces isomorphisms at the H1 and H2 levels. Stallings theorem, i.e. theorem 5.1 in [50],
then implies that

(ιε)k : π1(∂εW)/Γkπ1(∂εW)
'

−−−−−→ π1(T )/Γkπ1(T )

are isomorphisms for every k ∈ N∗. But π1(∂εW) is the free group Fn generated by meridians mε
1, · · · ,m

ε
n.

It follows from Habegger-Lin’s Lemma 1.3 in [15] that for k ≥ n, R
(
Fn

/
ΓkFn

)
� RFn. As a consequence:

Proposition 1.4. The inclusions ι0 and ι1 induce isomorphisms

RFn � Rπ1(∂0T )
'

−−−−−→
ι∗0

Rπ1(T )
'

←−−−−−
ι∗1

Rπ1(∂1T ) � RFn.
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Using the isomorphisms of Proposition 1.4, we define, for every ribbon tube T , a map ϕT : RFn → RFn

by ϕT := ι∗0
−1 ◦ ι∗1. This can be seen as reading the top meridians as products of the bottom ones. It

is straightforwardly checked that ϕT•T ′ = ϕT ◦ ϕT ′ and this action on RFn is obviously invariant under
isotopies of ribbon tubes.

It follows from Corollary 1.1 that:

Proposition 1.5. For every ribbon tube T , ϕT is an element of AutC(RFn), the group of conjugating auto-
morphisms which send each bottom (or top) meridian to a conjugate of bottom (or top) meridian. More
precisely, the action of T ∈ rTn on RFn is given by conjugation of each generator xi, for i ∈ ~1, n�, by the
image through ι∗0 of an ith longitude of T .

Note that, in the reduced free group, this conjugation does not depend on the choice of a ith longitude.

1.2.3 Classification results
Link-homotopy

Definition 1.6. A singular ribbon tube is a locally flat immersion T of n annuli t
i∈~1,n�

Ai in
∗

B4 such that

• ∂Ai = Ci × {0, 1} for all i ∈ ~1, n� and the orientation induced by Ai on ∂Ai coincides with that of Ci;

• the singular set of T is a single flatly transverse circle, called singular loop, whose preimages are

two circles embedded in
n
∪
i=1

Åi, an essential and a non essential one.

• there exist n locally flat immersed 3–balls ∪
i∈~1,n�

Bi such that

– ∂∗Bi = Åi and ∂εBi = Di × {ε} for all i ∈ ~1, n� and ε ∈ {0, 1};

– the singular set of
n
∪
i=1

Bi is a disjoint union of flatly transverse disks, all of them being ribbon

singularities but one, whose preimages are two disks bounded by the preimages of the singular

loop, one in
n
∪
i=1
∂∗Bi and the other with interior in

n
∪
i=1

B̊i.

We say that a singular ribbon tube is self-singular if and only if both preimages of the singular loop belong
to the same tube component.

Definition 1.7. Two ribbon tubes T1 and T2 are said to be (link-)homotopic if and only if there is a 1–
parameter family of regular and (self-)singular ribbon tubes from T1 to T2 passing through a finite number
of (self-)singular ribbon tubes.
We denote by rTh

n the quotient of rTn by the link-homotopy equivalence, which is compatible with the
monoidal structure of rTn. Furthermore, we denote by rPh

n the image of rPn in rTh
n.

Proposition 1.6. [23] The homotopy equivalence is generated by circle crossing changes, which are the
operations in B4 induced by the local move shown in Figure 1.6, which switches the local ordering on the
preimages of a given singular circle.
The link-homotopy equivalence is generated by self-circle crossing changes, where it is furthermore re-
quired that both preimages are on the same tube component.

Note that a circle crossing change can be seen as a local move among symmetric broken surface di-
agrams. Indeed, although applying a circle crossing change yields a surface diagram which is no longer
symmetric (see the middle of Figure 1.7), the resulting “paired essential preimages with same ordering”
corresponds to a piece of tube passing entirely above or below another piece of tube. There is thus no
obstruction in B4 for pushing these two pieces of tube apart, so that their projections don’t meet anymore
(see the right-hand side of Figure 1.7).

We now state one of the main results of this subsection.

Theorem 1.4. Every ribbon tube is link-homotopic to a monotone ribbon tube.
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Figure 1.6: A circle crossing change at the level of broken surface diagrams
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Figure 1.7: Circle crossing change at the symmetric broken surface diagram level

As mentioned before the proof of this theorem is done completely in the realm of Gauss diagrams and
the topological interpretation follows from the connections between welded knot theory and ribbon tori
through the Tube map introduced by Yajima in the classical case and extended to welded links by Satoh.

Action on the reduced free group and link-homotopy

Previously, a conjugating automorphism ϕT was associated to any ribbon tube T . It turns out that this
automorphism ϕT is invariant under link-homotopy.

Proposition 1.7. If T0 and T1 are two link-homotopic ribbon tubes, then ϕT = ϕT ′ .

We can now give the main result of this section

Theorem 1.5. The map ϕ : rTh
n −→ AutC(RFn), sending T to ϕT is an isomorphism.

One can reformulate the theorem using Milnor invariants which can be seen as numerical invariants
encoding the associated automorphism, see the last section of [2]. This gives also a natural context for an
extension of Milnor invariants to welded links.

Classification of ribbon torus links up to link-homotopy

In [16] a structure theorem was given for certain “concordance-type” equivalence relations on links. Here
we give an analogous structure theorem in the higher dimensional case. Actually, we follow the reformu-
lation given in [17], which was in fact implicit in the proof of [16].

We consider n-component ribbon torus-links, that is, locally flat embeddings of n disjoint tori in S 4

which bound locally flat immersed solid tori whose singular set is a finite number of ribbon disks. Denote
by rLn the set of n-component ribbon torus-links up to isotopy. The tube-closure operation defined in
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Remark 1.1 induces a natural closure map ˆ : rTn → rLn, which is easily seen to be surjective. Indeed,
given an n-component ribbon torus-link, it is always possible up to isotopy to find a 3-ball intersecting the n
components transversally exactly once, along an essential circle, so that cutting the ribbon torus-link along
this ball provides a preimage for the closure operation. We shall refer to such a ball as a “base-ball”.

Consider an equivalence relation E on the union, for all n ∈ N∗, of the sets rTn and rLn. We will denote
by E(x) the E-equivalence class of a ribbon tube or torus-link x, and we also denote by E the map which
sends a ribbon knotted object to its equivalence class. We denote respectively by ErTn and ErLn the set of
E-equivalence classes of ribbon tubes and ribbon torus-links.

The Habegger-Lin Classification Scheme relies on the following set of axioms:

(1) The equivalence relation E is local, i.e. for all L1, L2 ∈ rTn such that E(L1) = E(L2), and for all
T1,T2 ∈ rT2n such that E(T1) = E(T2), we have

(i) E(L̂1) = E(L̂2),

(ii) E(1n ⊗ L1) = E(1n ⊗ L2), where ⊗ denotes the horizontal juxtaposition,

(iii) E(L1 C T1) = E(L2 C T2) and E(T1 B L1) = E(T2 B L2), where the left action C and right action
B of rT2n on rTn are defined in Figure 1.8.

T   L =

T

L

;

T

L

L   T =

Figure 1.8: Shematical representations of the left and right actions of T ∈ rT2n on L ∈ rTn

(2) For all L ∈ rTn, there is a string link L′, such that E(L · L′) = E(1n).

(2′) For all L ∈ rTn, E(L · L) = E(1n), where L denotes the image of L under the hyperplane reflexion
about B3 × { 12 }.

(3) The equivalence relation E on ribbon torus-links is generated by isotopy of ribbon torus-links and the
equivalence relation E on ribbon tubes: if L and L′ are two ribbon torus-links such that E(L) = E(L′),
then there is a finite sequence L1, . . . , Lm of ribbon tubes such that L is isotopic to L̂1, L′ is isotopic
to L̂m, and for all i (1 ≤ i < m), either E(Li) = E(Li+1) or L̂i is isotopic to L̂i+1.

Let E be a local equivalence relation. Denote respectively by ES R
n and ES L

n the right and left stabilizers
of the trivial ribbon tube in ErTn. One can easily check that ES R

n and ES L
n are both submonoids of rT2n.

Furthermore, the closure operation induces a map ˆ : ErTn → ErLn which passes to the quotient by ES R
n

(resp. ES L
n ).

Now, assume in addition that the equivalence relation E satisfies Axiom (2). Then clearly the monoid
ErTn is a group, and both ES R

n and ES L
n are subgroups of ErT2n. If the stronger Axiom (2′) holds, then we

actually have ES R
n = ES L

n .

Theorem 1.6 (Structure theorem for ribbon torus-links).

• Let E be a local equivalence relation satisfying Axiom (2). Then, for ∗ = R or L, the quotient map

rTn −→ ErTn
/
ES ∗n

factors through the closure map, i.e., we have a ribbon torus-link invariant

Ẽ : rLn −→ ErTn
/
ES ∗n

such that the composite map to ErLn is E.
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• Furthermore, if Axiom (3) also holds, then we have a bijection

ErTn
/
ES ∗n = ErLn.

This structure theorem is shown by applying verbatim the arguments of [16], as reformulated in Theo-
rem 3.2 of [17]. Indeed, although these papers only deal with classical knotted objects, the proof is purely
combinatorial and algebraic, and involves no topological argument except for [16, Prop. 2.1], whose ribbon
tube analogue can actually be shown by a straightforward adaptation of Habegger and Lin’s arguments.

We have the following classification result for ribbon torus-links up to link-homotopy.

Proposition 1.8. The link-homotopy relation on ribbon tubes satisfies Axioms (1), (2′) and (3) above.
Consequently, we have a bijection

rTh
n
/
S +

n
= rLh

n,

where rLh
n is the set of link-homotopy classes of ribbon torus-links and S +

n denotes the stabilizer of the
trivial ribbon tube in rTh

n with respect to the right (or left) action of rT2n on rTn defined in Figure 1.8.

1.3 Work in progress, open questions and perspectives

1.3.1 Sliceness and quantum invariants
In [12], Eisermann proposed to generalize his divisibility criterion for ribbon links from the Jones poly-
nomial to other quantum invariants, in particular the HOMFLYPT polynomial. His suggestion was to
continue to look at the divisibility of the invariant by the value of the unknot. It turned out later that Kazuo
Habiro gave a counter-example showing that it was the wrong generalization of the criterion. It was already
noticed by Eisermann in [12] that it was not working for the two-variable Kauffman polynomial. Recall
here that one of the motivations and explanations for Eisermann to look to this precise value of the Jones
polynomial was that in fact it is a value which gives a common evaluation of the Jones polynomial and
the Alexander polynomial. Moreover they specialize to another classical invariant, namely the determinant
which was known to be zero for ribbon links. Hence it is immediate that the Jones polynomial should
be divisible at least once by the minimal polynomial of this value which is in fact the value of the Jones
polynomial on the unknot. We conjecture the following generalization of Eisermann’s criterion:

Conjecture 1.1. Given a one variable polynomial link invariant P, a complex number a and a natural
number k such that P(a)(L) = det(L)k for any link L, then for each ribbon link L with n components the
polynomial P(L) is divisible by the (nk)-th power of the minimal polynomial of a.

We plan to start to investigate this conjecture in two particular cases: the first is the specialization of
the HOMFLYPT polynomial corresponding to quantum sl2n (in this case k = 1) and the second is a com-
mon specialization of the two variables Kauffman polynomial and the two variable Links-Gould invariant
(in this case k = 2). We already checked the divisibility criterion on the first prime links using the data
provided by the LinkInfo webpage developed by Cha and Livingston.

One more long term project is to consider properties satisfied by ribbon links that cannot be transferred
to slice links through the previous strategy of proof. One idea is to consider "positivity properties", study
for instance the image of almost pure ribbon tangles in the Temperley-Lieb algebra from this prospective.
We started to think about this with Eisermann.

1.3.2 Link-homotopy classification for general annuli
The work initiated in [2] with Audoux, Bellingeri and Meilhan already had further developments in the
direction of the interactions between topology of ribbon surfaces on one hand and welded and virtual knot
theory on the other hand which we do not present in this manuscript [4], [3]. Instead with present here a
work in progress with Audoux and Meilhan aimed at generalizing the main results of [2] by removing the
ribbon hypothesis. In particular, we conjecture the following :

21



Conjecture 1.2. The statement of Theorem 1.5 remains true without the ribbon hypothesis on the annuli.

We discuss now our strategy for the proof of this conjecture. The link-homotopy classification of
spheres was settled by Bartels and Teichner [5]. They proved in two main steps that they are all link-
homotopic to the trivial. First they showed that embedded spheres are always singular concordant to the
trivial ones and then they promote this concordance to a link-homotopy. They have this result for all codi-
mension 2 embeddings of sphere of dimension n ≥ 2, but their proof simplifies in the case n = 2 because
they understand completely the singular link concordance in terms of elementary ones. Using their proof
we want to prove that annuli are always link-homotopic to ribbon ones. Then the conjecture will follow
from our classification for ribbon ones and the fact that the morphism to the automorphism of the reduced
free group passes to the quotient by the link homotopy relation for general annuli. Remark also that the fact
that annuli are link-homotopic to ribbon ones immediately implies the result of Bartels-Teichner; hence it
would be better to have a proof of the conjecture without relying on their results, but for the moment it is
not clear how to do such a proof.
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Chapter 2

Cubical quotients of the braid group
and link invariants

2.1 On the Links-Gould invariant

2.1.1 Introduction and context

In 1992, Links and Gould introduced a polynomial invariant of knots and links out of a family of 4-
dimensional representations of the quantum Lie superalgebraUq(2|1). This invariant satisfies a cubic skein
relation, that is the simplest skein relation that can be asked for, the quadratic one being characteristic of
the HOMFLY-PT polynomial. It shares this property with the Kauffman polynomial (see next subsection)
(which corresponds to the quantum orthosymplectic Lie algebras and their standard representations), but
behaves quite differently, notably with respect to disjoint union of links : the Kauffman polynomial is
multiplicative with respect to the disjoint union of two links, whereas the Links-Gould polynomial vanishes
on such disjoint unions.

The additional skein relations satisfied by the Kauffman polynomial are relations of the so-called
Birman-Wenzl-Murakami (BMW) algebra (see [6], [41]). This BMWn algebra is a quotient of the group
algebra KBn of the braid group over some field K of characteristic 0 by a generic cubic relation and by
some other relations in KB3, and there exists a single Markov trace on the tower of algebras BMWn, whose
value on closed braids provides the Kauffman invariant. This algebra is a deformation of the classical alge-
bra of Brauer diagrams, and as such admits a basis with a nice combinatorial description. It describes the
centralizer algebra of the action ofUqosp(V) inside V⊗n.

The goal of the work [37] with Marin was to define a similar algebra for the Links-Gould polynomial.
We first consider the corresponding centralizer algebra LGn and prove the following statement, analogous
to the well-known fact that the BMWn algebra, defined as a (quantum) centralizer algebra, is a quotient of
KBn.

Theorem 2.1. The natural morphism KBn → LGn is surjective.

We do no expand here on the Lie theoretic and quantum background involved in the definition of the
centralizer algebra LGn and neither do we develop the proof of this theorem but rather refer here to [37]
and for a more general setting where centralizer algebras can be seen as quotient of braid groups algebras
[30].

As a consequence, LGn is a natural candidate for being an analogue of the BMWn algebra for the Links-
Gould polynomial. As it is a centralizer algebra, we have a natural (combinatorial) description of its simple
modules, but we do not have yet a satisfactory description of its elements.

Our main goal was to get a presentation of LGn by generators and relations. We do no succeed com-
pletely, but we defined a finite dimensional quotient An of the cubic Hecke algebra and prove that it supports
a unique Markov trace yielded by the Links-Gould polynomial that factorizes through LGn.
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2.1.2 Finite dimensional quotients of the cubic Hecke algebras
From the previous theorem we know that we are looking at finite dimensional quotients of the braid group
algebra which are also a centralizer algebras for a certain family of 4-dimensional representations of the
quantum Lie superalgebra Uqso(2|1). From this, one can compute the dimension of the algebra LGn for
small values of n and we have the following conjecture about its dimension in general:

Conjecture 2.1. For all n,

dim LGn+1 =
(2n)!(2n + 1)!
(n!(n + 1)!)2

We checked this formula for n ≤ 50. It gives dim LG1 = 1, dim LG2 = 3, dim LG3 = 20, dim LG4 =

175, dim LG5 = 1764.
From the fact that we are looking at a finite dimensional quotient of the braid group algebra which

satisfies a cubic relation one can use explicit descriptions of the cubic Hecke algebras Hn = Hn(a, b, c) for
n ≤ 5. The cubic Hecke algebra Hn = Hn(a, b, c) is the quotient of the group algebra KBn of the braid group
by the relations (si −a)(si −b)(si − c) = 0 or, equivalently, by the single relation (s1 −a)(s1 −b)(s1 − c) = 0,
since all si’s are conjugated in Bn. In case a, b, c are three distinct roots of 1, Hn is the group algebra of the
group Γn = Bn/s3

i = Bn/s3
1, which is known to be finite if and only if n ≤ 5, by a theorem of Coxeter (see

[10]).
The algebras Hn are semi-simple and thus isomorphic over the algebraic closure K of K to a direct sum

of matrix algebras. Moreover we can consider LGn as a quotient of Hn, that is LGn = Hn/In for an ideal
In over Hn. Combining the explicit description of the algebras Hn for n ≤ 5 (given for instance [7] see also
[34] and [33]), work of Ishii [21] describing LG3 by generators and relations and the computations of the
dimensions of LGn for small n, we obtained explicit matrix description of LGn for n ≤ 5.

In particular, in [21], Ishii introduced a relation r2 ∈ H3 satisfied by the Links-Gould polynomial and
he proved that LG3 is the quotient of H3 by this relation r2. From our study of LGn and Hn for n ≤ 4 we
have the following :

Proposition 2.1. The quotient of KB4 by a generic cubic relation r1 and Ishii’s relation r2 has dimension
dim KB4/(r1, r2) = 264 > dim LG4 = 175.

This proves that Ishii’s relations are not sufficient to define LGn. Using computer computations we
were able to find a new relation r3 ∈ H4 such that

Proposition 2.2. KB4/(r1, r2, r3) = H4/(r2, r3) = LG4.

We obtained the relation r3 by finding explicit bases of LG3 and LG4 in terms of braid words. In
particular we have:

LG4 =

 ∑
r∈{−1,0,1}

LG3sr
3LG3

 ⊕ Ks−1
3 s2s−1

3

All these computations culminate in the following theorem :

Theorem 2.2. For n ≥ 3 we have

1. LGn = LGn−1s±1
n−1LGn−1 +

∑
k+`=n LGkLGl

2. LGn =
∑

r LGn−1sr
n−1LGn−1 + LGn−3(s−1

n−1sn−2s−1
n−1)

We define An = Hn/(r2, r3) for n ≥ 4, A3 = H3/(r2), A2 = H2. By definition, An ' LGn for n ≤ 4. The
proof of the previous theorem relies on the explicit bases of LG3 = A3 and LG4 = A4 and the relation r3,
hence we have the same theorem where LGn is replaced by An. In particular,

Theorem 2.3. For all n ≥ 3,

An+1 = An + AnsnAn + Ans−1
n An + An−2s−1

n sn−1s−1
n .

This implies immediately that An is finite dimensional for all n. We conjecture that An and LGn have
the same dimension and hence:

Conjecture 2.2. For all n, An ' LGn.
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2.1.3 Markov traces
The main result of this subsection is that the tower of algebras (An)n≥1 can be endowed with a unique
Markov trace Trn which computes the Links-Gould invariant. In addition we prove that the relations r1, r2
and r3 are a complete set of relations for the Links-Gould invariant, i.e. one can recursively compute the
Links-Gould invariant using this relations.

Given an integer n ≥ 1, consider the natural embedding of Bn into Bn+1. Denote by φn its extension to
an homomorphism from An to An+1.

Theorem 2.4. For z ∈ K, there exists a family of traces Trn : An → K, n ≥ 1, such that

• Trn+1(φn(β)) = zTrn(β) for all β ∈ An.

• Trn(αβ) = Trn(βα) for all α, β ∈ An.

• Trn+1(φn(β)s±1
n ) = Trn(β) for all β ∈ An (‘Markov property’).

• Tr1 = 1

if and only if z = 0. Moreover in this case, this family is unique. This trace factorizes through LGn and is
also the unique one on LGn.

Remark 2.1. Given an integer n ≥ 1, for all 1 ≤ k ≤ n consider the natural embedding of Bk × Bn−k into
Bn (see Figure (2.1)). Denote by φk its extension to an homomorphism from Ak ⊗ An−k to An. Define In the
subvectorspace of An generated by the images of the φk (1 ≤ k ≤ n).

Figure 2.1: Injection of Bk × Bn−k into Bn.

The fact that z is equal to zero and an induction argument shows that the unique trace Trn on An

vanishes on In. This implies that the Links-Gould invariant vanishes on split links (see [19] for a different
proof).

Corollary 2.1. The relations r1, r2 and r3 are a complete set of skein relations for the Links-Gould invari-
ant.

Remark 2.2. Notice first that the relations r1, r2 and r3 are sufficient to compute the Links-Gould invariant.
In addition, one can deduce relations expressing the elements s±3 s−1

2 s1s−1
2 s±3 , in the chosen basis of A4 which

could in pratice simplify a recursive computation. All these relations are of course consequences of r1, r2
and r3

Let us also mention that the Lawrence-Krammer representation factorize through LGn.

Proposition 2.3. For n ≥ 2, the Lawrence-Krammer-Bigelow representation factorizes through LGn and
therefore, for n ≥ 2, the morphism Bn → LG×n is into.

The proof of the proposition is obtained by giving a characterization the Lawrence-Krammer-Bigelow
representation (see [37]).

In order to connect the present work, with the one presented in the next section, we stress here the
first hypothesis satisfied by the Markov trace considered in Theorem 2.4. This miltiplicative property is
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not required from the definition of a Markov trace in general. It is nevertheless a property satisfied by all
Markov traces constructed using representation theory of quantum groups. It is an easy check to see it
follows from the quadratic relation (together with the ’Markov property’) in the case of the Hecke algebra,
but it is not a priori required for the Markov traces factoring through a cubic quotient of the braid group
algebra. We do not investigate this question in the case of LGn or An but first in the easier case of the BMW
algebra which is also a finite dimensional quotient of the cubic Hecke algebra.

2.2 On the BMW algebras
In this section we present our joint work [36] with Marin aiming at classifying the Markov traces on the
BMW algebra without assuming a multiplicative property. The first problem was to fix our definition of
the BMW algebra and we introduced a presentation (see Definition 2.2) which was valid simultaneously
for the symplectic and orthogonal version of the BMW algebra (seeing the BMW as a centralizer algebra).
It turned out that for generic values of the parameters, it was still a version of the usual BMW algebra, but
for some specializations it was one dimension bigger and this is the origin of the algebras presented in the
next subsection. In this manuscript we present the results in the inverse order than the one in [36].

2.2.1 New finite dimensional quotients of the braid group algebra
We present in this subsection various finite dimensional quotients of the braid group algebra which are
related to classical algebras such as Temperley-Lieb algebra, Hecke algebra and Birman-Murakami-Wenzl
algebra. We explicit in the next subsection how they were constructed and explicit their relations with these
classical algebras.

Theorem-Definition. We define an algebra Fn over A = Q[a, x, x−1]/(a2 = 1) by generators s1, . . . , sn−1,
e1, . . . , en−1,C and relations

1. sisi+1si = si+1sisi+1, sis j = s jsi if|i − j| > 1

2. (si − a)(s2
i − xsi + 1) = 0

3. ei = a
(

s−1
i +si

x − 1
)

4. siei = aei

5. eisi+1ei = ei + C

6. eisi−1ei = ei + C

7. eis−1
i+1ei = ei + C

8. eis−1
i−1ei = ei + C

9. siC = Csi = aC.

It’s a free A-module of rank 1 + (2n − 1)!!.

Remark 2.3. The quotient of Fn by the ideal generated by C is a specialization of a BMW-algebra.

Remark 2.4. Letting δ̃ = 2 − ax, we have e2
i = δ̃x−1ei. Immediate consequences of these relations are

s−1
i C = Cs−1

i = aC, eiC = Cei = x−1δ̃C, C2 = (x−2δ̃2a − x−1δ̃)C = x−1δ̃(ax−1δ̃ − 1)C = 2x−2δ̃(a − x)C.
Note that, in the specializations x = a and x = 2a, we have C2 = 0. These are exactly the cases where Fn

is a non trivial extension of the BMW-algebra.

As in the usual case, one can consider a subalgebra corresponding to a Temperley-Lieb algebra and a
quotient algebra corresponding to a Hecke algebra.
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Theorem-Definition. We define a unital algebra T̃ Ln over A = Q[a, x, x−1]/(a2 = 1) by generators
e1, . . . , en−1,C and relations

1. e2
i = δ̃x−1ei

2. eiC = Cei = δ̃x−1C

3. C2 = 2x−2δ̃(a − x)C

4. eie j = e jei if | j − i| ≥ 2

5. eie jei = ei + 2a
x C if | j − i| = 1

It’s a free A-module of rank 1 + 1
n+1

(
2n
n

)
.

Remark 2.5. The quotient of T̃ Ln by the ideal generated by C is a specialization of a Temperley-Lieb
algebra.

In order to obtain the Hecke algebra, one usually takes the quotient by the ideal generated by the ei’s,
but by doing so we also have C = 0. Instead, we consider the quotient by the square of the ideal generated
by the ei’s and C. In this quotient we have also ei = −C for all i = 1, . . . , n − 1. Computing eiC = C2 in
two different ways shows that C is still zero except if x = 2a. Set A0 = A/(x − 2a).

Theorem-Definition. Consider Fn(0) = Fn ⊗A A0 and let A0F+
n be the two sided ideal of Fn(0) generated

by e1, . . . , en−1,C. Define Fn to be the quotient of Fn(0) by the ideal (A0F+
n )2. It’s a free A0-module of rank

1 + n!.

We understands the structure of this algebra and it turns out that one can define a similar algebra for
each Coxeter system (W, S ), as we do now :

Theorem-Definition. Let (W, S ) be a Coxeter system, and k a field of characteristic , 2. The formulas
s.Ew = Esw if `(sw) = `(w) + 1

= −2a`(w)C + 2aEw − Esw otherwise
s.C = aC

for all s ∈ S , w ∈ W, define a representation of the Artin-Tits group B associated to (W, S ) on the free
module over k[a]/(a2−1) spanned by C and the Ew,w ∈ W. When W is finite, the image of the group algebra
of B inside this representation is a free module of rank 1 + |W |. In all cases, this image projects onto the
Iwahori-Hecke algebra of (W, S ) defined by the relation (s−a)2 = 0 for all s ∈ S , with kernel the linear span
of C̃ = −(s − a)2 for an arbitrary choice of s ∈ S . When W admits a single conjugacy class of reflections,
this algebra is the quotient of the group algebra of B by the relations (t − a)(s − a)2 = (s − a)2(t − a) = 0
for all s, t ∈ S .

Remark 2.6. The quotient of Fn by the ideal generated by C is the (−1)-Hecke algebra.

In the next subsection we investigate various traces on these algebras.

2.2.2 Traces and Markov traces on Fn, Fn and T̃ Ln.
Since Fn has as a quotient a BMW algebra, we know already that there are at least two Markov traces,
one tH

n yielded by the HOMFLYPT polynomial and another tK
n yielded by the Kauffman (or Dubrovnik)

polynomial (see next subsection) Both traces tH
n and tK

n are by definition zero on C. In addition we have a
trace t††n on Fn given by t††n (β) = anψn(β), where ψn : Fn → A is an algebra morphism defined by si 7→ a.

Theorem 2.5. Given a Markov trace on Fn ⊗A A[(x− a)−1, (x− 2a)−1] , it is a linear combination of tH
n , tK

n
and t††n .
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Figure 2.2: Closure of a Temperley-Lieb diagram with 2 components.

It can be seen that in this case t††n (C) , 0.
It remains to study the cases x = a and x = 2a. In the first case, the traces tK

n and t††n coincide and in
the second so do tH

n and t††n . We know then that in each case there could be at most three different Markov
traces (see [36]. We would like to construct an additional Markov trace in each case. We do so in the case
x = 2a and conjecture the existence of a third Markov trace in the case x = a. Before pursuing, we consider
the restriction of the additionnal trace on T̃ Ln in each case.

Set A0 = A/(x − 2a) and A1 = A/(x − a). Consider T̃ Ln(0) = T̃ Ln ⊗A A0, T̃ Ln(1) = T̃ Ln ⊗A A1.

Proposition 2.4. There exist a family of traces tn : T̃ Ln(1)→ A1 satisfying tn(C) = −an+1, and

tn(ei1 . . . eik ) = ak+n (
N(ēi1 . . . ēik ) − k

)
whereN(ēi1 . . . ēik ) denotes the number of connected components of the diagrammatic closure of ēi1 . . . ēik ∈

T Ln (see Figure 2.2)

Proposition 2.5. Let n ≥ 3 and un, vn ∈ A0. There exists a trace on T̃ Ln(0) defined by tn(1) = vn,
tn(C) = −un, tn(ei) = un for all i ∈ [1, n − 1] and

tn(ei1 . . . eik ) = 0 if k ≥ 2.

Let us notice now that in the case x = 2a, we define in the previous subsection a finite dimensional
quotient Fn of Fn(0) = Fn ⊗A A0. The next theorem settles the case of the Markov traces on Fn.

Theorem 2.6. There exists a unique family of traces tn : Fn → A0 satisfying tn+1(βs±1
n ) = tn(β) for all

β ∈ Fn−1 and t2(C) = 1.

The previous Markov trace has the following value on C: tn(C) = an, for all n.

Corollary 2.2. A Markov trace on Fn(0) is a linear combination of tH
n = t††n , tK

n and tn.

The Markov trace on Fn(0) factoring through Fn coincides with the one constructed on T̃ Ln(0) for the
values un = −an, v1 = 0 vn = (n − 2)an+1. Notice in particular that t1(1) = 0 and tn(1) = (n − 2)an+1

for n ≥ 2. Notice that we were able to construct the additional trace on Fn(0) because there was a proof
of the existence of the HOMFLYPT polynomial by Jones via the Ocneanu trace and this proof could be
adapted in your setting. The situation for Fn(1) is different, since there were only two proofs for the
existence of the Kauffman polynomial, one using skein theory and diagrams by Kauffman and another
using the representation theory of quantum groups. We needed a purely algebraic proof of the existence of
the Kauffman polynomial in order to adapt it to our situation. This is why we only conjectured existence
in [36]:
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Conjecture 2.3. There exist a Markov trace e on Fn(1) such that tn(C) = −an+1.

In a joint work in progress with Poulain d’Andecy and Thiel [42] we constructed a very nice inductive
basis of the BMW algebra which allows to give a positive answer to this conjecture, see the end of this
section for further precisions.

2.2.3 Classification of the Markov traces on the BMW-algebras.
We explain now the relationship between the algebra Fn considered in the two previous sections and
BMW−algebra. We give first two different definitions of a BMW-algebras. Set R = Q[a, b, c, (abc)−1, (b + c)−1]
and denote x = b + c and y = bc. Let RBn be the braid group algebra on n strands over R. Define for
i = 1, . . . , n − 1.

ei =
a
y

ys−1
i + si

x
− 1

 .
Definition 2.1. We define an algebra BMWn over R by generators s1, . . . , sn−1, e1, . . . , en−1 and relations

1. sisi+1si = si+1sisi+1, sis j = s js j

2. (si − a)(si − b)(si − c) = 0

3. ei = a
y

(
ys−1

i +si

x − 1
)

4. eisi+1ei = ei

5. eisi−1ei = ei

6. eis−1
i+1ei = ei

7. eis−1
i−1ei = ei

Remark 2.7. The algebra BMW+
n = BMWn ⊗R R/(a = y) is the (up to change of coefficients) usual BMW

algebra yielding the Kauffman polynomial. The algebra BMW−
n = BMWn ⊗R R/(a = −y) is the (up to

change of coefficients) usual BMW algebra yielding the Dubrovnik polynomial.

We consider now another quotient.

Definition 2.2. We define an algebra B̃MWn over R by generators s1, . . . , sn−1, e1, . . . , en−1 and relations

1. sisi+1si = si+1sisi+1, sis j = s jsi for |i − j| > 1

2. (si − a)(si − b)(si − c) = 0

3. ei = a
y

(
ys−1

i +si

x − 1
)

4. s−1
i+1eis−1

i+1 = y−2siei+1si

Proposition 2.6. The two algebras BMWn⊗RR/(a2−y2) and B̃MWn⊗RR/(a2−y2) are naturally isomorphic
after tensoring by R[(bc − 1)−1].

The proof of this proposition amounts to prove that the relations on three stands generate the same
ideal, if a2 = y2 and a2 − y invertible. First we consider the case of the algebra BMWn.

Proposition 2.7. There are at most two independent Markov traces on BMWn.

The proof of this proposition follows easily from the relation on three strands. In fact there are exactly
two if a2 = y2 and one otherwise. In the first case they correspond to the Kauffman polynomial and
HOMFLYPT polynomial, in the second only the HOMFLYPT remains. From the same type of reasoning
there is only one Markov trace on B̃MWn if a2 − y2 is invertible. It follows that the only remaining case to
consider is the case of B̃MWn when a2 = y2 = y = 1. This is where it connects to the first two subsections.
Identify A with R/(a2 = y2 = y = 1) and define the A-algebra BMW††

n = B̃MWn ⊗R /(a2 = y2 = y = 1)
We have the following theorem:
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Theorem 2.7. The morphism of A-algebras BMW††
n → Fn induces an isomorphism after tensoring by

A[(x + 2a)−1].

This isomorphism settles the question of the study of the Markov traces on BMWn and on B̃MWn up
to the conjecture whose resolution we do in fact discuss in the next subsection and the case x + 2a = 0 on
B̃MWn , for which one can see that there are infinitely many Markov traces detecting only the number of
components of the closure of the braids, see [36].

2.3 Work in progress, open questions and perspectives

2.3.1 About the Links-Gould invariant
Even if we were able to find a relation on four strands for the Links-Gould invariant which was enough
to give a complete set of skein relations for this invariant and to define a new finite quotient of the braid
group algebra, this new relation is not enough manageable to further study this new quotient and under-
stand deeper the Links-Gould invariant. The consequence is that in order to seriously attack our conjectures
about the Links-Gould invariant and its defining algebra, we need an equivalent relation but more tractable.

Problem 2.1. Find new skein relations for the Links-Gould invariant, in particular on four strands.

One strategy to handle this problem is to look for instance for relations on four strands which will
correspond to kind of lifts of relations on three strands in the sense that one obtains the latter by partially
closing the former.

We mention also here the work of Ben-Michael Kohli who proved a conjecture of De Wit-Ishii-Links
on a relation between the Links-Gould invariant and the Alexander polynomial and further conjectured that
the Links-Gould invariant provides informations on the knot genus and the fiberness of knots. It naturally
brings us to the following problem:

Problem 2.2. Find a topological definition of the Links-Gould invariant.

This question is in some sense the central question in quantum topology, but we believe that amongst
all quantum invariants, the invariants coming from (super)-Hopf algebras are the most tractable ones from
the topological point of view and the Links-Gould invariant the easiest one in this family of invariants.

2.3.2 About the BMW algebras
In the present version of my joint work with Marin [36], we only conjecture the existence of the additional
non multiplicative Markov trace on Fn(1), see Conjecture 2.3. We develop here our joint work in progress
with Poulain d’Andecy and Thiel which as a by product settles this conjecture.

We construct inductively a new basis of the algebra BMWn defined in 2.1 starting from bBMW
1 = {1} the

basis of BMW1. For i = 1, . . . , n, consider the following elements of BMWn+1:

xn,i = sn
−1 · · · si

−1 and yi,n = si · · · sn.

Then we have the following theorem :

Theorem 2.8. The family bBMW
n+1 = {φn(b), φn(b)xn,i, yi,nφn(b)|b ∈ bBMW

n , i = 1, . . . , n} forms a basis of
BMWn+1.

Notice first that the cardinality of this basis is equal to the dimension of BMWn+1 and that the basis
naturally generalizes the similar basis for the Hecke algebra (using only the xn,i’s or the yn,i’s). Moreover
it does not descend to a basis of the Brauer algebra, when specializing the parameters, but its inductive
construction allows to recover purely algebraically the two variable Kauffman polynomial.
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The proof uses another basis of the BMW algebra constructed by Morton [39] and we prove by induc-
tion on n that each element of Morton’s basis can be expressed in the inductive basis.

Corollary 2.3. There exists exactly two Markov traces on the tower of algebras
(
BMWn ⊗R R/(a2 − y2)

)
n≥1

.

Another corollary is a basis for the algebra Fn.

Corollary 2.4. The family {bBMW
n ∪C} forms a basis of Fn

And hence a proof of conjecture 2.3:

Theorem 2.9. Conjecture 2.3 is true.

We finish this paragraph by mentioning that the Theorem 2.8 allows to classify the transverse Markov
traces on the BMW algebras. Recall here that a transverse Markov trace, is only invariant under positive
(de)-stabilization and is not required to be invariant under negative (de)-stabilization. The classification
says that all transverse Markov traces are the one factoring through the Hecke algebra (which is a quotient
of the BMW algebra) and the classical Markov trace yielding the two variable Kauffman polynomial. It is
interesting to notice that the transverse Markov traces on the Hecke algebra are controlled by the HOM-
FLYPT polynomial and the self-linking number and this has a connection with the fact that some partial
degree of the framing variable of the HOMFLYPT polynomial is related by an inequality (Morton-Franks-
Williams inequality) to the self-linking number. This classification result on the Hecke algebra was surely
known by the community. Nevertheless, a MFW-type inequality was not known for the two variable Kauff-
man polynomial which is now explained by the classification result on the BMW algebra.

2.3.3 About cubical quotients in general
Up to reparametrizations, there is only one quadratic quotient of the group algebra of the braid group,
namely the Hecke algebra. In addition in this case there is only one Markov trace given by the HOMFLYPT
polynomial a two variable link invariant. In the cubical case, as developed before, the situation is less clear
and this brings us to the following question:

Problem 2.3. Does there exist a finite dimensional quotient of the cubic Hecke algebra supporting a
(multiplicative) three variable Markov trace?

In the cases developed in this section, for the Links-Gould invariant and the two variable Kauffman
polynomial, we know that the defining algebras do not support other multiplicative traces than the one we
started with. We know also that the algebras BMWn and LGn are not directly related starting from n = 4
(for n = 3, BMW3 is a quotient of LG3). In addition we know by Ishii ([20]) that the Links-Gould invariant
and the two variable Kauffman polynomial have a common specialization. A starting point, would be to
understand a defining algebra for this common specialization and starting from there look for an algebra
that will have both algebras as a quotient, at least on four strands. In addition one can also look for other
quantum invariants satisfying a cubical relation. Let us finish by mentioning the recent work of Marin [35]
which allows to see the Yokonuma-Hecke algebra as a cubical quotient, unfortunately the Markov traces
on this algebra are now completely understood, see for instance [43].
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Chapter 3

A little bit of categorification

3.1 Toward a categorification of the BMW algebras

In this section we discuss the joint work with Vaz [53] whose aim was to explore connections between
the BMW algebra (related to type B,C, D quantum groups by Schur-Weyl duality) and type A algebras (q-
Schur algebras and HOMFLYPT skein algebras of tangles). This connection was manifest in a formula by
Jaeger relating the 2-variable Kauffman polynomial and the HOMFLYPT -polynomial. It was later further
explored by Vaz as a manifestation of a branching rule. In the paper [53], we express this connection as a
morphism of algebras and explore consequences from a categorification perspective. In this subsection, we
concentrate for the A side on the skein algebra and refer to [53] for the development on the q-Schur algebra.

3.1.1 Skein algebras and BMW algebras.

Let R = C(a, q) be the field of rational functions in two variables and n a positive integer.
We introduce also some short-hand notation in order to simplify many of the expressions. For a formal
parameter a and for n, k ∈ Z we denote [an, k] := anq−k−a−nqk

q−q−1 . We allow a further simplification by writing
[an] instead of [an, 0]. Moreover, when dealing with 1-variable specializations we use [m + k] for [qm, k] =
qm+k−q−m−k

q−q−1 , which is the usual quantum integer.

BMW algebras

A (n, n) 4-graph is a planar graph with 2n univalent vertices and such that the rest of the vertices are 4-
valent. It can be embedded in a rectangle with n of the univalent vertices lying at the bottom segment
and n lying at the top one. We think of a (n, n) 4-graph as the singularization of a (n, n) unoriented tangle
diagram, which is the graph obtained by applying the transformation

7−→ 7−→

to all its crossings.

Definition 3.1. Define BMWn(a, q) as the free algebra over R generated by (n, n) 4-graphs up to planar
isotopies fixing the univalent vertices modulo the following local relations:

= [a](q2a−1 + q−2a)
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= (q + q−1) +

(
[a3,−3] + 1

)

+ + + + [a2,−4]

= + + + + [a2,−4]

(3.1)

= δ

= δ

where δ = [a2,−1] + 1.

The product structure is given by stacking one graph over the other.
We remark that the special elements

ρi = . . . . . .

1 i i + 1 n

(i = 1, . . . , n − 1) (3.2)

ei = . . . . . .

1 i i + 1 n

(i = 1, . . . , n − 1) (3.3)

together with

1 = . . . . . . (3.4)

generate BMWn(a, q) and can be used to give a presentation of BMWn(a, q) by generators and relations
(see [39]) which makes explicit the isomorphism with the BMW algebras of the previous section.

Skein algebras

We define an oriented (n, n) 4-graph to be a (n, n) 4-graph together with an orientation looking near each
4-valent vertex as follows

.

In other words, an oriented (n, n) 4-graph is the singularization of a (n, n) oriented tangle diagram. All the
oriented 4-valent graphs we consider are of this type.
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Definition 3.2. Define the algebra Skeinn(a, q) as the free algebra over R generated by (n, n) oriented
4-valent graphs up to planar isotopies modded out by the following relations:

= [a,−1] (3.5)

= (q + q−1) (3.6)

= + [a,−2] (3.7)

+ = + (3.8)

= [a] = [a] (3.9)

= [a] (3.10)

The product structure is given by stacking one graph over the other being zero if the orientations do not
match. In addition,

+ [a,−3] = + [a,−3] (3.11)

is a consequence of the previous relations.

3.1.2 Connecting morphisms between Skein algebras and BMW algebras.
Given a (n, n) 4-valent graph Γ, we can resolve each of its vertex in eight different ways,

7→ , , , , , , , .

The graph obtained by choosing a resolution for each vertex is called a complete resolution. A complete
resolution resulting in a coherently oriented (n, n) graph is called an oriented complete resolution and
denoted

−→
Γ . Denote by res(Γ) the set of all oriented complete resolutions of Γ. Notice that if there is no

4-valent vertex (i.e. Γ consists of an embedding of n arcs) there are 2n resolutions consisting in choosing
an orientation for each arc.

Given an oriented (n, n) 4-valent graph Γ we can apply the transformation

7−→

to smooth all 4-valent vertices of Γ and obtain a disjoint union of oriented circles and n oriented arcs
embedded in the plane. Define the rotational number rot(Γ) of Γ to be the sum over all resulting circles and
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arcs of the contribution of each circle and each arc, where a circle contributes −1 if it is oriented clockwise
and +1 otherwise, and arcs contribute ±1 or zero according with the rules given below.

rot
( )

= +1 rot
( )

= 0 rot
( )

= +1

rot
( )

= −1 rot
( )

= 0 rot
( )

= −1

(3.12)

In addition the rotational number of a strand going up or down is zero.
The rotational number is additive with respect to the multiplicative structure of (n, n) 4-valent graphs

given by concatenation. For example,

rot
(

◦

)
= rot


 = rot

( )
+ rot

( )
= 0.

The last concept needed in this section is the weight w associated to each oriented complete reso-
lution. It is computed as a product of local weights associated to each 4-valent vertex of Γ and an oriented
resolution of it. The local weights are described below.

w
(

,
)

= w
(

,
)

= q−1 ,

w
(

,
)

= w
(

,
)

= q , (3.13)

w
(

,
)

= w
(

,
)

= w
(

,
)

= w
(

,
)

= 1 .

For any (n, n) 4-valent graph Γ, we define the Jaeger homomorphism as

ψ(Γ) =
∑
−→
Γ∈res(Γ)

(a−1q)
rot(
−→
Γ )

w(
−→
Γ )
−→
Γ . (3.14)

Theorem 3.1. The map ψ from BMWn(a, q) to Skeinn(a, q) is a well-defined injective morphism of algebra.

This morphism allows to see the BMW algebra as a subalgebra of a type A algebra. Based on this
morphism, one can also obtain a morphism from the BMW algebra to direct sum of type A q-Schur algebras,
we do not expand on this morphism and refer to [53].

3.1.3 A glimpse of categorification

We specialize the previous seting to a = qN and consider Skeinq(n,N) := Skeinn(qN , q). We denote also by
BMWq(n,N) the specialization BMWn(qN , q). This specialization is related to the representation theory of
the quantum group Uq(so2n).

Let us first recall the philosophy of categorification. The split Grothendieck group K0 of an additive
category C is the free abelian group generated by the isomorphism classes [M] of objects M of C modulo
the relation [C] = [A]+ [B] whenever C � A⊕B. When C has a monoidal structure the Grothendieck group
is a ring, with multiplication given by [A ⊗ B] = [A][B]. Moreover, if C is a graded category then K0(C)
has a structure of Z[q, q−1]-module, where [M{k}] = qk[M].

35



Let R be a commutative ring with 1, A and algebra over R and {ai}i∈I a basis of A. By a (weak)
categorification of (A, {ai}i∈I) we mean an additive monoidal categoryA together with an isomorphism

γ : R ⊗Z K0(C)→ A (3.15)

sending the class of each indecomposable object of C to a basis element of A (see [25] for a detailed
discussion).

Matrix factorizations and the Skeinq(n,N) categorification

In [27] Khovanov and Rozansky constructed a link homology theory categorifying the quantum slN-
invariant PN of links. The starting point is the diagrammatic MOY state-sum model [40] of PN , whose
underlying algebraic structure is exactly Skeinq(n,N) (this was the main motivation for the presentation
given in Definition 3.2). The procedure consists expanding a link diagram D in an alternating sum in
Skeinq(n,N), each term being evaluated to a polynomial in Z[q, q−1] using the defining rules of Skeinq(n,N)
from Definition 3.2.

The main ingredient of [27] is the use of matrix factorizations. Let R be a commutative ring and W ∈ R.
A matrix factorization of W consists of a free Z/2Z-graded R-module M together with a map D ∈ End(M)
of degree 1 satisfying D2 = W. IdM .

In [27] Khovanov and Rozansky associated to each graph Γ in Skeinq(n,N) a certain graded matrix
factorization M(Γ) and showed that for each relation Γ =

∑
i Γi in Definition 3.2 (with a = qN) we have

a direct sum decomposition M(Γ) � ⊕iM(Γi). To a link diagram they associated a complex of matrix
factorizations and proved that the direct sum decompositions they obtain are sufficient to have topological
invariance up to homotopy.

The reader now may ask why not use the bigraded matrix factorizations from [28] to obtain a categori-
fication of the 2-variable BMW algebra. Unfortunately the matrix factorization from [28] associated to the
left hand side of Equation (3.7) is not isomorphic to the direct sum of the matrix factorizations associated
to the right hand side. This is the main reason why the HOMFLY-PT homologies that exist are defined only
for braids and closures of braids and not for tangles.

Toward a categorification

We now explain abstractly our procedure. We use the symbolY to refer to the categorification of Skeinq(n,N)
and symbols {Y j} j∈J to denote its indecomposable objects. This categorification has the Krull-Schmidt prop-
erty, meaning that each object decomposes into direct sum of indecomposable objects which is unique up
to permutation (see [44, Sec. 2.2]). This implies that the classes of the indecomposables in K0(Y) form a
basis of K0(Y). In addition this basis is positive that is, all the multiplication coefficients in this basis are
nonnegative since they count multiplicities in direct sum decompositions.

As explained before we expand every element x of BMWq(n,N) as a linear combination of elements of
another algebra, the latter admitting a categorification. We write it abstractly as

x =
∑
j∈J

c jy j (3.16)

where each y j is a basis element of Skeinq(n,N) and c j ∈ N[q, q−1].
Homomorphism γ (3.15) sends [Y j] to y j and therefore we think of the object Y j as the lift to Y of the

basis element y j. This results in a well-defined object X of Y given by

X =
⊕

j∈J

Y j{c j} (3.17)

where we use the notation Y{qi1 + . . . + qik } = Y{i1} ⊕ . . . ⊕ Y{ik}.

We now define an additive monoidal category X from this data.

Definition 3.3. Category X is the (monoidal) full subcategory of Y generated by products of the ob-
jects X given by Equations (3.17) which are images under Jaeger’s homomorphism of the generators of
BMWq(n,N) from Equations (3.2)-(3.4). The morphisms of X are the obvious ones from Y.
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Given a basis (xi)i∈I of BMWq(n,N) consider the element Xi constructed above for each xi. Since
the relations in BMWq(n,N) lift to relations in Y, it follows that the {[Xi]}i∈I generates the Grothendieck
ring K0(X). Recall that BMWq(n,N) is naturally equipped with a non-degenerate bilinear form given by
the Kauffman polynomial. It follows that if there was non-trivial relations satisfied by the Xi’s in Y it
would contradict the non-degeneracy of this bilinear form. Hence we can deduce that the [Xi]’s are linearly
independent in K0(X) and form a basis of K0(X). Using this remark and the results of [27] and [32] it is
not hard to prove the following

Proposition 3.1. We have an isomorphism K0(X) � BMWq(n,N).

Unfortunately the category X does not have the Krull-Schmidt property, which is a desirable property
for the reason explained above. To get a categorification with the Krull-Schmidt property we need to add
some objects to X. This yields another category X′ as follows.

Definition 3.4. An object A of Y is an object of X′ if there are objects B and C of X such that A ⊕ B � C.

The construction of categoryX′ resembles the construction of the category of special bimodules in [48]
(see also [38, Sec. 3.1]). Notice we still have K0(X′) � K0(X). We were able to prove by hand that X′ has
indeed the Krull-Schmidt property in the cases up to BMWq(3,N).

Conjecture 3.1. The category X′ has the Krull-Schmidt property.

One could feel tempted to take the Karoubi envelope of X to guarantee Krull-Schmidt property. Recall
the Karoubi envelope of a category C consists in adding more objects to Cwhich are images of idempotents.
In the Karoubi envelope every idempotent splits and consequently we have the Krull-Schmidt property [44].
It is easy to see that this procedure would add too many objects making the Grothendieck ring too large to
be isomorphic to BMWq(n,N).

We are suggesting a category having the Krull-Schmidt property which is not Karoubian. Such cate-
gories are known to exist. For example the category of super-vector spaces with odd dimension and even
dimension both equal is not Karoubian but has the Krull-Schmidt property.

It would be interesting to relate the lift of the 4-vertex using matrix factorizations with the one Kho-
vanov and Rozansky did in [26] using convolutions of matrix factorizations.

3.2 More categorification from topology

In this subsection we present our joint work with Gadbled and Thiel [14] on a categorification of a two pa-
rameters homological representation of the extended affine type A braid group. It is naturally an extension
of the categorification of the Burau representation by Khovanov and Seidel [23]. The exposition differs
from [14]; we do not include a complete definition of the homological representation we are categorifying
and neither do we discuss (tri)-graded intersection numbers which was the heart of your proof of the faith-
fulness of the categorical action in [14]. The homological representation can be directly recovered from
the categorical one, see Theorem 3.2 and Remark 3.4. We discuss in the paragraph after Theorem 3.3 and
Corollary 3.1 another perspective on the faithfulness.

Let n be a fixed integer with n ≥ 3.

3.2.1 Extended affine type A braid group

Braid groups by generators and relations

The extended affine type A braid group B̂Ân−1
is generated by

σ1, . . . , σn, ρ,
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subject to the relations

σiσ j = σ jσi for distant i, j = 1, . . . , n (3.18)
σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n (3.19)

ρσiρ
−1 = σi+1 for i = 1, . . . , n (3.20)

where the indices have to be understood modulo n, e.g. σn+1 = σ1 by definition. We say that i and j are
distant (resp. adjacent) if j . i ± 1 mod n (resp. j ≡ i ± 1 mod n).

This group can be depicted by diagrams on the cylinder as shown in Figure 3.1 with the convention
that a diagram drawn from bottom to top corresponds to a braid word read from right to left. The generator
σi consists in a crossing between the strands labelled i and i + 1 modulo n while ρ consists in a cyclic
permutation of the points 1 to n.

i

i+2

1

n

i−1
i+1

i

i+2

1

n

i+1
2

n−1

Figure 3.1: The affine braid generators σi and ρ

Remarks 1. The group B̂Ân−1

• possesses as subgroups the finite type A braid group BAn−1 generated by σ1, . . . , σn−1, but also the
affine type A braid group BÂn−1

generated by σ1, . . . , σn. In fact, B̂Ân−1
is simply isomorphic to the

semi-direct product BÂn−1
o 〈ρ〉 of the latter and of the infinite cyclic group generated by ρ, where the

action of ρ on BÂn−1
given by conjugation permutes cyclically the generators σi;

• is isomorphic to the finite type B braid group BBn−1 generated by σ1, . . . , σn−1 and τ such that the σi

are subject to the finite braid relations (3.18) for i = 1, . . . , n − 1 and (3.19) for i = 1, . . . , n − 2 and
that the following relations are satisfied:

σiτ = τσi for i = 2, . . . , n − 1 (3.21)
τσ1τσ1 = σ1τσ1τ. (3.22)

This isomorphism identifies the generators σi for i = 1, . . . , n − 1 while it sends ρ to the product
τσ1 . . . σn−1;

• is a subgroup of the finite type A braid group BAn generated by the σi for i = 0, . . . , n − 1 subject to
the finite braid relations (3.18) for i = 0, . . . , n − 1 and (3.19) for i = 0, . . . , n − 2. It consists exactly
in the subgroup generated by the elements of BAn that leave the first strand (labelled by 0) fixed. One
hence recovers the cylindrical pictorial description of B̂Ân−1

by ”inflating” this fixed strand that can
be seen as the core of the cylinder, see e.g. Figure 3.2 depicting the image σ2

0σ1 . . . σn−1 of ρ in
BAn . Note that the generator σn is sent to σ2

0σ1 . . . σn−2σn−1σ
−1
n−2 . . . σ

−1
1 σ−2

0 , and that in the type B
presentation of this group, τ is simply sent to σ2

0.

See [1], [52], [24] or [9] for more details about this subject.
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i

i+2

1

n

i+1
2

n−1

7−→

0 1 nn−1n−2

Figure 3.2: Image of ρ

Braid groups as mapping class groups

Let M be an orientable surface possibly with boundary. We will denote by MCG(M, n + 1) the mapping
class group of the surface M with n + 1 marked points defined as the group of orientation-preserving
homeomorphisms of M that fix the n + 1 marked points setwise and the boundary pointwise up to isotopy.
We will use the notation ∆ for the set {0, . . . , n} of marked points and sometimes consider these marked
points as punctures and view M as a n + 1-punctured surface.

For a fixed set S ⊂ ∆, we will also consider the subgroup MCG(M, n+1, S ) of MCG(M, n+1) consisting
of all mapping classes fixing pointwise the punctures of M belonging to the set S .

The finite type A braid group BAn is isomorphic to the mapping class group MCG(D, n + 1) of the
n + 1-punctured 2-disk D depicted in Figure 3.3.

10 2 n−1 n

D

dots

Figure 3.3: The n + 1-punctured 2-diskD

Each generator σi corresponds to the mapping class with support a small open disk enclosing the
punctures i and i + 1 and consisting in rotating this disk by π radians as described by Figure 3.4. We call
this mapping class the half-twist along the arc bi and denote it by tbi . It swaps the punctures i and i + 1 and
leaves all the others fixed pointwise.

i i+1

alphai

7−→

Figure 3.4: The half-twist along the arc bi

Its subgroup MCG(D, n + 1, {0}) is isomorphic to the finite type B braid group BBn−1 where once again
the half-twists tbi are identified to the generators σi for i = 1, . . . , n − 1, while τ corresponds to the full
twist t2

b0
. But BBn−1 being isomorphic to B̂Ân−1

, one might prefer to work with the extended affine type A
presentation of this group. Then, to depict the generating mapping class corresponding to ρ, it is more
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convenient to draw the n + 1-punctured 2-disk as in Figure 3.5. In this setting, ρ will simply correspond to
the 1/n-twist t∂ with support an open disk enclosing all the punctures and consisting in rotating this disk by
2π/n radians. It sends the ith puncture to the i + 1st mod n, for i = 1, . . . , n while leaving the 0th puncture
fixed.

i+1

i+2

n−1

n

1

2 i

0

Figure 3.5: The affine configuration of the n + 1-punctured 2-diskD

In the sequel of this section, we will sometimes use indistinctly the same notation for a braid and a
homeomorphism representing its mapping class.

In [29], Khovanov and Seidel construct a categorical representation of the finite type A braid group
BAn in the homotopy category of the category of graded projective left modules over a certain quotient
of the path algebra of a finite type A double quiver. This representation is faithful and it decategorifies
on a linear one parameter representation equivalent to the Burau representation of BAn . Our aim is, fol-
lowing Khovanov and Seidel’s ideas, to use an affine type A double quiver in order to obtain a categorical
representation of the extended affine type A braid group B̂Ân

. This latter representation is designed to decat-
egorify on the linear 2-parameters homological representation similar to the classical Burau representation
and hence requires to work with a module category endowed with a rich algebraic structure, namely a
trigrading.

3.2.2 Action on a module category
This subsection is devoted to the definitions of those affine quiver algebra, trigraded module category and
categorical representation.

The quiver algebra Rn

The notation used here for paths is taken from [29]. Recall that the path going from vertex i1 to vertex
ik through the successive vertices i2, . . . , ik−1 is denoted by (i1|i2| · · · |ik−1|ik). Start with the cyclic double
quiver Γn pictured in Figure 3.6 and let Rn be the quotient of the path ring of the quiver Γn by the relations:

n−1

2

n

1

i+2

i+1

i

Figure 3.6: The affine type A double quiver Γn
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(i|i + 1|i) = (i|i − 1|i) for i = 1, . . . n,
(i − 1|i|i + 1) = (i + 1|i|i − 1) = 0 for i = 1, . . . n,

where the integers are taken modulo n. This ring is trigraded and unital, with a family of mutually orthog-
onal idempotents (i) summing up to the unit element. It is generated as an algebra by the idempotents and
the paths of length one. The three gradings on Rn are defined as follows:

• the first grading is defined by setting that the degree of (i|i + 1) is one while the degree of any other
generator is zero (which is the opposite convention as the one chosen by Khovanov and Seidel);

• the second grading is simply the path length grading. Note that with the given relations, any path is
at most of length 2 in Rn. This second grading will be considered as a Z/2Z grading;

• the third grading is defined by setting that the degree of (n|1) is 1, the degree of (1|n) is −1 while the
degree of any other generator in Rn is zero.

These three gradings are well-defined and one will denote by {−} a shift in the first grading, by (−) a shift
in the second and by 〈−〉 a shift in the third. The convention being that the ith summand of a module shifted
by k is the (i − k)th summand of the original module.

As an abelian group Rn is free of rank 4n.

Remark 3.1. If one forgets about the two last gradings on Rn, and just consider it as a singly graded
algebra, it is in fact a particular case of the general construction of algebras associated to graphs by
Huerfano and Khovanov, see [18]. Note that, in that paper, they are also considering actions of quantum
groups and braid groups on certain module categories over these algebras.

The category of finitely generated trigraded left modules Rn−mod has a Grothendieck ring K (Rn −mod)
which is isomorphic toZ

[
t±1, s±1

]
⊗Zn. TheZ

[
t±1, s±1

]
-module structure comes from the self–equivalences

{1} and 〈1〉 of Rn−mod consisting in shifting the first and third gradings by one. The problem with this cat-
egory is that the isomorphism classes of the indecomposable left projective modules Pi = Rn(i) do not form
a basis of K (Rn −mod) as in the finite Khovanov-Seidel case because Rn has infinite global dimension.

Note that in the sequel, we will denote the right indecomposable projective modules iP = (i)Rn and the
isomorphism class of a module M by [M].

Therefore we will rather work over the category Rn − proj of finitely generated trigraded projective left
modules. This category, unlike Rn − mod, is not abelian, but only additive, though its split Grothendieck
ring is also isomorphic to Z

[
t±1, s±1

]
⊗ Zn, with basis f = {[Pi] , i = 1, . . . , n}. While, as before, the first

grading (resp. the third) decategorifies onto theZ
[
t±1

]
-module (resp. Z

[
s±1

]
-module) structure, the second

grading, which is a Z/2Z grading, decategorifies as a sign (which will sometimes be denoted ε).
Let tρ be the automorphism of the ring Rn that sends any path (i1|i2| . . . |ik) to (i1 + 1|i2 + 1| . . . |ik +

1). One can observe that this automorphism do not preserve the trigrading on Rn, but only the two first
gradings. This implies that, if one constructs a bimodule Rρ

n by simply twisting the right action on the
regular bimodule Rn by tρ, i.e. r ∈ Rn acts on Rρ

n on the right by multiplication by tρ(r), the resulting
bimodule is not trigraded anymore. So, in order to define a trigraded twisted bimodule, one cannot only
twist the action on the regular bimodule Rn but one has to construct a new bimodule in the more subtle way
that we will describe now.

Let T ρ
n be the trigraded Rn–bimodule generated by all elements of Rn set to be in the same first and

second degree as in Rn, but with the third grading shuffled as follows:

• the degree of (1), (2|1), (1|n) and (1|2|1) is −1

• the degree of any other generator is zero.

The left action of Rn on T ρ
n is simply the multiplication while its right action is the multiplication twisted

by tρ. Let us also consider the trigraded Rn–bimodule ρTn constructed similarly but with the third grading
shuffling given by:
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• the degree of (1), (n|1), (1|2) and (1|2|1) is 1

• the degree of any other generator is zero.

Here Rn acts on the right on ρTn by multiplication and on the left by multiplication twisted by tρ.

Lemma 3.1. T ρ
n and ρTn are well-defined trigraded Rn–bimodules.

Remark 3.2. The chosen shufflings of the third grading appear to be natural when one observes that, as
a trigraded left Rn–module, T ρ

n is simply isomorphic to P1 〈−1〉 ⊕ P2 ⊕ . . . ⊕ Pn while, as a trigraded right
Rn–module, ρTn is isomorphic to 1P 〈1〉 ⊕ 2P ⊕ . . . ⊕ nP.

Categorical representation

We consider Cn to be the homotopy category of bounded cochain complexes of Rn–proj. Its Grothendieck
ring is also isomorphic to Z

[
t±1, s±1

]
⊗Zn, with basis the isomorphism classes of indecomposable projec-

tives, see [45].
For all i = 1, . . . , n, the two complexes Fi and F′i of Rn–bimodules are defined as in [29]:

Fi : 0→ Pi ⊗Z iP
di
−→ Rn → 0

F′i : 0→ Rn
d′i
−→ Pi ⊗Z iP{−1} → 0

with Rn sitting in cohomological degree zero and where the respective differentials of these length one
complexes are:

di((i) ⊗ (i)) = (i)
d′i (1) = (i − 1|i) ⊗ (i|i − 1) + (i + 1|i) ⊗ (i|i + 1)

+ (i) ⊗ (i|i − 1|i) + (i|i − 1|i) ⊗ (i)

where the integers again have to be understood modulo n.
Consider also the two following complexes of Rn–bimodules of length zero concentrated in cohomo-

logical degree zero:

Fρ : 0→ T ρ
n → 0

F′ρ : 0→ ρTn → 0

Remark 3.3. Consider the functors

F i = Fi ⊗Rn −, F
′
i = F′i ⊗Rn −, F ρ = Fρ ⊗Rn − and F ′ρ = F′ρ ⊗Rn −.

Since the bimodules Pi ⊗Z iP, T ρ
n and ρTn are projective as left modules, the former functors are well-

defined endofunctors of the category Cn. Plus these bimodules being also projective as right modules,
these functors are actually exact. Hence they induce linear maps on the Grothendieck ring K (Cn).

Theorem 3.2.

(i) There is a weak action of the braid group B̂Ân−1
on Cn given on the generators σi by the functors F i,

on their inverses σ−1
i by the functors F ′i , on the generator ρ by the functor F ρ, on its inverse ρ−1 by

the functor F ′ρ and on any braid word σ by the functor F σ consisting in tensoring on the left by the
tensor product of the complexes associated to the generators appearing in the braid word.
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(ii) This action induces a linear representation ρAKS of B̂Ân−1
on the Grothendieck ring K (Cn) � Z

[
t±1, s±1

]n

which is given in the basis f = {[Pi] , i = 1, . . . , n} of K (Cn) by:

ρAKS (σi) =


Ii−2 0 0 0 0
0 1 0 0 0
0 1 −t t 0
0 0 0 1 0
0 0 0 0 In−i−1

 for i = 2, . . . n − 1,

ρAKS (σ1) =


−t t 0 s−1

0 1 0 0
0 0 In−3 0
0 0 0 1


ρAKS (σn) =


1 0 0 0
0 In−3 0 0
0 0 1 0
ts 0 1 −t


ρAKS (ρ) =

(
0 s−1

In−1 0

)
ρAKS (ρ−1) =

(
0 In−1
s 0

)

Remark 3.4. The linear representation obtained by decategorification ρAKS is equal to the homological
action of the extended affine braid group on the first homology of a Z2-cover of the punctured disk.

3.2.3 faithfulness of the categorical action
Trigraded curves and normal forms

Consider the real projectivization P = PT (D\∆) and a covering of it with deck transformation group Z3.
Consider an oriented embedding ofD as an open subset ofR2 so that its tangent bundle TD has a canonical
oriented trivialization. As a consequence the projectivization of TD in restriction over D\∆ identifies with

PT (D\∆) = RP1 × (D\∆).

For any puncture i in ∆, we will denote by λi : S 1 → D\∆ a choice of a small loop winding positively
around the puncture i. As the classes [point × λi] together with the class of a fibre [RP1 × point] form a
basis of H1(P;Z), we define a class C ∈ H1(P;Z3) by specifying its images on these elements, namely:

C([point × λi]) = (−2, 1, 0) for i = 1, . . . , n
C([point × λ0]) = (−2, 0, 1)

C([RP1 × point]) = (1, 0, 0).

We will denote by P̌ the covering classified by C and by χ the Z3-action on it.
Let f be an element of Diff(D,∆, {0}), its differential D f is a diffeomorphism of the tangent bundle

of D\∆ which is linear in the fibres of T (D\∆) and thus induces a diffeomorphism PD f of P. As such
a map f preserves winding numbers and as D f sends a fibre to another fibre, the map PD f preserves the
class C and can be lifted to an equivariant diffeomorphism of P̌. We will denote by f̌ the unique lift of PD f
which acts trivially on the fibre of P̌ over any point of P|∂D.

Note that any curve c has a canonical section sc : c\∆ → P by taking the class in each fiber of its
tangent line: sc(z) = [Tzc]. One defines a trigrading of c to be a lift č of sc to P̌ and a trigraded curve to be
a pair (c, č) of a curve and a trigrading of that curve. The Z3-action on P̌ induces a Z3-action on the set of
trigraded curves and the lifts of diffeomorphisms induce a Diff(D,∆, {0})-action on this set that commutes
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with the Z3-action. One can also lift the isotopy relation so that these actions induce actions of these same
group on the set of isotopy classes of trigraded curves.

The arguments of [29] adapt to our trigraded case so that we have the following properties:

Lemma 3.2.

(i) A curve c admits a trigrading if and only if it is not a simple closed curve.

(ii) The Z3-action on the set of isotopy classes of trigraded curves is free: a trigraded curve č is never
isotopic to χ(r1, r2, r3)č for any (r1, r2, r3) , 0.

(iii) Let c be a curve which joins two points of ∆, none of them being the puncture 0, let tc ∈ Diff(D,∆, {0})
be the half twist along it and ťc its preferred lift to P̌. Then ťc(č) = χ(−1, 1, 0)č for any trigrading č
of c.

Consider basic curves b1, . . . , bn and curves d1, . . . dn as in Figure 3.7 which divide the disc D into
regions D1, . . . ,Dn.

Dn

1

i

2

n

di

0

bi

i+1

n−1

d1

dn

dn−1

D1

Figure 3.7: The arcs bi and di and the sectors Di.

A curve c is called admissible if there exist a mapping class σ and i ∈ {1, . . . , n} such that c = σ(bi).
So the endpoints of any admissible curve are in {1, . . . , n}. Conversely any curve whose endpoints lie in
{1, . . . , n} is admissible.

We will say that an admissible curve c is in normal form if it has minimal intersection with all the di’s.
One can always achieve normal form by isotopy. The study of curves in this section makes sense because
of the following uniqueness result:

Lemma 3.3. Let c0 and c1 be two isotopic curves, both of which are in normal form. Then there is an
isotopy relative to d1 ∪ d2 ∪ . . . ∪ dn which carries c0 to c1.

Let c be a curve in normal form. Then each connected component of c ∩ Dk belongs to one of the six
following types depicted in Figure 3.8.

Conversely, an admissible curve c which intersects all the dk transversally and such that each connected
component of c ∩ Dk belongs to one of the types listed in the Figure 3.8 is already in normal form.

For the rest of this section, c is an admissible curve in normal form. We will call crossing and de-
note cr(c) = c ∩ (d1 ∪ d2 ∪ . . . ∪ dn) the intersections of this curve with the barriers of the sectors and the
intersections with dk will be called k-crossings of c. The connected components of c ∩ Dk, 1 ≤ k ≤ n are
called segments of c, and a segment is said essential if its endpoints are both crossings (and not punctures).
So, the essential segments are those of type 1, 1’, 2, 2’, and the basic curves have no essential segments.

The curve c can be reconstructed up to isotopy by listing its crossings and the types of essential seg-
ments bounded by consecutive crossings as one travels along c from one end to the other, and Lemma 3.3
shows that conversely this combinatorial data is an invariant of the isotopy class of c.
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Figure 3.8: The six possible types.

Let us now study the action of half-twists on normal forms. Remember that we denoted tbk the half-
twist along bk. Even when the curve c is in normal form, the curve tbk (c) is not necessarly in normal form
too. This image tbk (c) has minimal intersection with the di for i , k but one might need to simplify its
intersections with dk to get tbk (c) into normal form. The same argument as in [29] leads to the analogous
statement:

Proposition 3.2.

(i) The normal form of tbk (c) coincides with c outside of Dk ∪Dk+1. The curve tbk (c) can be brought into
normal form by an isotopy inside Dk ∪ Dk+1.

(ii) Assume tbk (c) is in normal form. There is a natural bijection between the i-crossings of c and the
i-crossings of tbk (c) for i , k. There is a natural bijection between connected components of inter-
sections of c and tbk (c) inside Dk ∪ Dk+1.

Admissible curves and complexes of projective modules

Given a trigrading č of an admissible curve in normal form, we associate an object L(č) in the category C′n
of bounded complexes of projective bigraded modules over the quiver algebra Rn. We define L(č) first as a
trigraded Rn-module as follows:

L(č) =
⊕
z∈cr(č)

P(z),

where P(z) = Pk(z)[−µ1(z) − nµ3(z)]{µ2(z) − nµ3(z)} 〈−µ3(z)〉 with [−] being a shift in the cohomological
grading. We endow the previous trigraded module with a differential given by:

• If z0 and z1 are two boundary crossings of an essential segment then it follows that they differ in their
µ1 grading by 1. Suppose for instance that µ1(z1) = µ1(z0) + 1. There are two possibilities:
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– If z0 and z1 are both k-crossings then ∂ : P(z0)→ P(z1) is the right multiplication by the element
(k|k + 1|k).

– If z0 (resp. z1) is a k0-crossing (resp. a k1-crossing) and we have |k0 − k1| = 1, then ∂ : P(z0)→
P(z1) is the right multiplication by the element (k0|k1).

• If z0 and z1 are not connected by an essential segment then there is no contribution of the differential
between P(z0) and P(z1).

It can be directly checked that the previous map ∂ satisfies ∂2 = 0 (this follows from the relations in
the quiver algebra Rn) and in addition ∂ is of trigraded degree (1, 0, 0), the first one corresponding to the
cohomological degree and the other two to the internal degrees of C′n. Hence we have the following lemma.

Lemma 3.4. For all admissible curves č in normal form, (L(č), ∂) is a trigraded differential module.

There is a free Z3-action on trigraded curves and also on the category C′n (by shifts). The next lemma
relates these two actions and can be directly checked from the construction of the trigraded differential
module L(č).

Lemma 3.5. For any triple (r1, r2, r3) of integers and any admissible trigraded curve č we have:

L(χ(r1, r2, r3)č) � L(č)[−r1 − nr3]{r2 − nr3} 〈−r3〉 .

The aim of the next theorem is to relate the action by endofunctor of the extended affine type A braid
group on L(č) and the complex associated to the image of the curve č under the mapping class group action.

Theorem 3.3. For any admissible trigraded curve č, we have the following isomorphisms in C′n:

F i(L(č)) � L(ťbi (č)) for all 1 ≤ i ≤ n.

and
F ρ(L(č)) � L(ť∂(č)).

Corollary 3.1. The categorical action is faithful

The original proof of Khovanov-Seidel relies on the fact that the graded dimension of the space of mor-
phisms of their category encodes graded geometric intersection numbers between curves. The faithfulness
of the categorical action then follows from the fact that it by definition preserves these spaces of morphisms
and and as a by product the (graded) geometric intersection numbers, and a mapping class that preserves the
geometric intersection numbers between admissible curves, is easily proved to be the identity. The previ-
ous theorem proves that the subcategory C additively generated by the complexes associated to admissible
trigraded curves is stable under the braid group action. It is not to difficult to see that for each trigraded
admissible curve č the complex L(č) is indecomposable. Moreover there is a one-to-one correspondance
between indecomposable objects in C and trigraded admissible curves č. As a consequence, acting as the
identity on the subcategory C implies acting as the identity on trigraded admissible curves, and the only
braid which acts as the identity on (trigraded)-admissible curves is the identity and the faithfulness follows.
In [14], we prove the faithfulness result using the graded dimension of spaces of morphism as Khovanov
and Seidel did, but it is interesting to see Theorem 3.3 as the key step in the proof of faithfulness and we
discuss this point of view further in the next section 3.3.2.

3.3 Work in progress, open questions and perspectives

3.3.1 Symplectic side of the picture
The original work of Khovanov-Seidel [23] was two-fold. In a first part they considered a zig-zag alge-
bra, introduced graded intersection numbers and proved the faithfulness of their braid group categorical
action. This is the part we generalized in our joint work with Gadbled and Thiel [14]. In the second part
of their paper they considered the symplectic side of the picture, by looking to the Fukaya category of
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the An singularity. In this setting, the categorical braid action comes from symplectic Dehn twists along
Lagrangian spheres, and they proved also faithfulness of this categorical action. The exact relationship
between the two pictures was not completely established at that time but was confirmed in the work of
Seidel and Thomas [47]. In a work in progress with Gadbled and Thiel we investigate the symplectic side
of the picture. If we ignore one of the grading we introduced, and restrict for instance to the affine braid
group of type A, the quadratic dual of our quiver algebra was used by Ishii-Ueda-Uehara [22] to establish
the faithfulness of a categorical action using an Homological Mirror Symmetry statement and the strategy
of proof of Khovanov-Seidel in the symplectic setting. It is not clear how to adapt their proof of their
Homological Mirror Symmetry statement including the additional grading and we instead want to prove a
formality statement which will allow us to prove that the algebraic category we are working with is equiv-
alent to a certain Fukaya category. We already know how to endow the Lagrangians with a bigrading. The
question of search for a mirror in this richer case (bigraded in the symplectic side) seems to be an interest-
ing question on its own and we plan to investigate it later.

3.3.2 Categorification of the Burau representation and Lawrence-Krammer-Bigelow
representations

The fact that Khovanov-Seidel categorical action was faithful unlike the Burau representation it categorifies
was source of various natural questions. Recall also here that the categorical mapping class group action
provided by the bordered Heegaard-Floer is also known to be faithful [31] with a very similar proof to the
one of Khovanov-Seidel, we generalized in the previous section.

Problem 3.1. Can algebraic properties of G be proved using the fact it has a faithful categorical action on
a module category?

This is a very interesting question but in the case of the braid group since there are so few faithfulness
results it would be interesting to see how they interact. As developed in the previous section our point of
view on the faithfulness of the categorical action is that it encodes in fact essentially the faithful action on
the infinite dimensional vector space formally generated by isotopy classes of embedded arcs connecting
two punctures. The process of decategorification transforms this faithful infinite dimensional linear repre-
sentation into a finite dimensional unfaithful linear representation, the Burau representation. This brings us
to the following question

Problem 3.2. For the categorical braid group action of Khovanov and Seidel, find a finer decategorification
process which retains more topological informations and remains faithfull.

In this braid group case, the linearity was proved using the Lawrence-Krammer-Bigelow representa-
tion. Hence a more precise question would be if one can find a kind of decategorification which returns the
Lawrence-Krammer representation. Preliminary computations with Queffelec and Thiel show that one can
extract the Lawrence-Krammer-Bigelow representation from the categorical action of Khovanov-Seidel.
For the moment the process is purely combinatorial and we seek for a more formal and algebraic one.
These computations already indicate that the cohomological grading used by Khovanov and Seidel is re-
lated to the second variable in the Lawrence-Krammer-Bigelow representation.

3.3.3 Unitarity and categorification
Most of the known categorifications rely on the existence of a (preserved) sesquilinear form and the cate-
gorification of Khovanov-Seidel of the Burau representation is one of them. The Burau representation was
proved to be unitarity by Squier [49] who explicitely gives the sesquilinear form and the matrix could a
posteriori be obtained from the matrix whose entries are the graded dimensions of the space of morphisms
between the projective indecomposables in Khovanov-Seidel construction. Moreover starting from this
matrix one could have guessed which algebra to use in this very particular situation. It turns out that the
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Lawrence-Krammer-Bigelow representation is also unitary and Budney [8] explicitely gave the sesquilinear
form in this case. Using it one can attack the following question:

Problem 3.3. Categorify the Lawrence-Krammer-Bigelow representation.

Since the Lawrence-Krammer-Bigelow representation factorizes through the BMW algebra, a solution
to the previous question would also shed some light on the categorification of this algebra.

48



Appendix:

We do not present the origin of the formula below, but it is directly connected to the joint work with Droz
[11]. In this work we explicitely connected the Kauffman state model of the Jones polynomial and another
model related to grid diagrams and Bigelow homological description of the Jones polynomial.

Given an oriented link diagram D, choose a base point p on D. An enhanced Kauffman state of D is
a choice of a resolution for each crossing of D (see Figure 3.9), together with a choice of orientation on
every resulting circle, see Figure 3.10 for an example.

A reduced enhanced Kauffman state of D is a choice of one resolution for each crossing of D, together
with a choice of orientation on every resulting circle, such that the orientation of the circle passing through
p agrees near p with the orientation of D. Denote by K red the set of reduced enhanced Kauffman states.

Given an oriented link diagram D, we resolve all the crossings of D as in Figure 3.11, we obtain a
disjoint union of oriented circles embedded in R2. We call these circles the Seifert circles of D. The
rotational number of D, denoted by rot(D), is the sum of the contributions of the circles. The contribution
of a Seifert circle is +1 if it is oriented counterclockwise and −1 otherwise. Denote by rot(p) the rotation
number of the Seifert circle passing through p. A basepoint p is said good if can be connected to infinity
without crossing D.

Given a crossing c of an oriented link diagram D, we define w(c) as in Figure 3.12. We define the writhe
w(D) of D,

w(D) =
∑

c crossings of D

w(c).

We denote by n+ the number of positive crossings and by n− the number of negative crossings of D. We
have w(D) = n+ − n−.

We define a grading Alex : K red → Z by the local weights described in Figure 3.13. For each state
s ∈ K red, Alex(s) is the sum over the crossings of D of the local weights.

Moreover, for any s ∈ K red, define rot(s) to be the sum of the rotational numbers of the oriented circles
constituing s and i(s) the number of resolutions in the underlying Kauffman state of the type depicted on
the lefthandside of Figure 3.9 (the so-called 1 resolution). Set

Mas(s) =
i(s)
2
−

rot(s)
2

+ Alex(s), for all s ∈ K red.

Figure 3.9: Kauffman resolutions
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Figure 3.10: Example of an enhanced Kauffman state

Figure 3.11: Oriented resolution

Negative crossing c, w(c) = −1 Positive crossing c, w(c) = +1

Figure 3.12: Crossings

Figure 3.13: Local weights for the grading Alex

Define
Q(t) =

∑
s∈K red

(−1)Mas(s)tAlex(s).

Theorem 3.4. Given an oriented link diagram D and a good basepoint p, the polynomial

∇(D)(t) = (−1)−
n+
2 −

rot(D)
2 +rot(p)t−

rot(D)
2 +

rot(p)
2 Q(t),

is the Alexander-Conway polynomial.

The proof is completely classical. We check that

W(t) = (−1)−
n+
2 −

rot(D)
2 +rot(p)t−

rot(D)
2 +

rot(p)
2 Q(t)

satisfies Alexander-Conway skein relation

∇( )(t) − ∇( )(t) = (t
1
2 − t−

1
2 )∇( )(t),

and is invariant under Reidemeister moves.
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