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Abstract

For any positive integer n, Khovanov and Rozansky constructed a
bigraded link homology from which you can recover the sln link poly-
nomial invariants. We generalize Khovanov-Rozansky construction in
the case of finite 4-valent graphs embedded into a ball B3 ⊂ R3. More
precisely, we prove that the homology associated to a diagram of a 4-
valent graph embedded in B3 ⊂ R3 is invariant under the graph moves
introduced by Kauffman.

Introduction

We consider finite oriented 4-valent graphs embedded into a ball B3 ⊂ R3.
We fix a great circle on the boundary 2-sphere of B3 and require that the
boundary points of the embedded graph lie on this great circle and that the
orientations around a vertex is as follows

.

These graphs are called open regular graphs. A diagram Γ of an open regular
graph is a generic projection of the graph onto the plane of the great circle.
An isotopy of such a graph should not move its boundary points and re-
spect the cyclic order on the vertices. An embedded graph into B3 without
boundary points is called a (closed) regular graph. If an open regular graph
can be embedded into the plane of the great circle, it is called planar and
we make no distinction between the graph and this generic projection, see
Figure 1 for an example.

For any positive integer n, Khovanov and Rozansky categorified the sln

link polynomials [4] by associating to a link diagram a complex of matrix
factorizations (see section 1.1 for a definition of matrix factorization). The
first step in their construction, is to associate a matrix factorization to an
open planar regular graph. Using their construction it is almost immediate
that one can associate a complex of matrix factorizations to a diagram of an
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Figure 1: Planar regular graph

open regular graph. We denote by Cn(Γ) the complex of matrix factorization
associated to a diagram Γ of an open regular graph. In order to prove that
the homotopy type of this complex of matrix factorizations is an invariant
of the open regular graph, we check that it is invariant under the graph
moves, called RV-moves introduced by Kauffman [2], see Figure 4. Hence,
we obtain the following theorem:

Theorem 1 Let Cn(Γ1) and Cn(Γ2) be complexes of matrix factorizations
associated to Γ1 and Γ2 diagrams of open regular graphs in B3. If there exist
a sequence of RV -moves such that Γ2 is obtained from Γ1 then Cn(Γ1) and
Cn(Γ2) are homotopy equivalent.

As pointed out by Kauffman and Vogel [3], link polynomial invariants give
rise to graph invariants, the same is true for Khovanov-Rozansky link ho-
mology.

In section 1, we recall the Khovanov-Rozansky construction and adapt it
to the case of oriented 4-valent graphs embedded in B3 ⊂ R3. In section 2,
we introduce Kauffman graph moves and in section 3, we prove the invari-
ance up to homotopy of the complex of matrix factorizations under these
moves.

1 Khovanov-Rozansky construction

1.1 Matrix factorizations

Let k be a positive integer, R = Q[x1, · · · , xk] be a commutative polynomial
Q-algebra and w ∈ R. A (R,w)-matrix factorization of potential w over R
consists of two free R-modules C0, C1 and two R-module maps

C0 d0

−→ C1 d1

−→ C0

such that d0 ◦ d1(m) = wm for all m ∈ C1 and d1 ◦ d0(m) = wm for all
m ∈ C0.
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A first example of matrix factorization is the following (R, ab)-matrix fac-
torization

R
×a
−→ R

×b
−→ R,

where a, b ∈ R. We note this matrix factorization (a, b)R. We construct more
matrix factorizations by tensoring over R such elementary factorizations (see
[4] for a definition of tensor products). More precisely we denote by











a1 b1

a2 b2
...

...
ak bk











R

the tensor product over R of (a1, b1)R, (a2, b2)R,. . . , (ak, bk)R. It’s a matrix
factorization of potential w = a1b1 + · · · + akbk. We consider the following
Z-grading on R: deg(xi) = 2, for i = 1, . . . , k. A matrix factorization is
graded if d0 and d1 are homogenous and deg(d0) = deg(d1). The grading
on R induces a grading on C0 and C1: C0 = ⊕i∈Z Ci,0, C1 = ⊕i∈Z Ci,1,
We denote by curly bracket{ . } the shift of the Z-grading: for i, k ∈ Z and
j ∈ Z/2Z, Ci,j{k} = Ci−k,j. For k ∈ Z, denote 〈k〉 the shift of the (Z/2Z)-
grading by k (mod 2). Given two graded (R,w)-matrix factorizations C
and D, a morphism f : C → D is a pair of R-module homomorphisms
f0 : C0 → D0 and f1 : C1 → D1 such that the following diagram commutes,

C0 d0
//

f0

��

C1 d1
//

f1

��

C0

f0

��

D0 δ0
// D1 δ1

// D0

The R-module homomorphisms f0, f1 preserve the Z-grading. A homotopy
h between morphisms f, g : C → D of matrix factorizations is a pair of
morphisms h0 : C0 → D1 and h1 : C1 → D0 such that

f0 − g0 = h1 ◦ d0 + δ1 ◦ h0, and f1 − g1 = h0 ◦ d1 + δ0 ◦ h1.

Given w ∈ R, we denote by hmfR
w the homotopy category of graded matrix

factorizations of potential w over R.

1.2 Planar regular graphs and matrix factorizations

Fix a positive integer n. We now recall the matrix factorizations that Kho-
vanov and Rozansky [4] associate to an open planar regular graph. Let Γ
be an open planar regular graph, k a positive integer and {x1, . . . , xk} a set
of marks on the edges of Γ such that every edge has a least one mark.
We consider the following piece of a planar regular graph
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xj xi

The matrix factorization Li
j associated to this piece is (πij , xi − xj)Q[xi,xj]:

Q[xi, xj ]
×πij
−→ Q[xi, xj ]{1 − n}

×(xi−xj)
−→ Q[xi, xj ],

where πij =
xn+1

i −xn+1

j

xi−xj
. The grading shift makes Li

j graded. More precisely

with this shift multiplications by πij and xi−xj become homogeneous maps
of degree n + 1. We now consider the following other piece Γ1 of a planar
regular graph:

xj

xlxk

xi

Fix R to be the ring Q[xi, xj , xk, xl]. We associate to such a piece a graded
matrix factorization of potential w = xi

n+1 +xj
n+1 −xk

n+1 −xl
n+1 over R.

We decompose w,

w = u1(xi, xj , xk, xl)(xi + xj − xk − xl) + u2(xi, xj ,k , xl)(xixj − xkxl)

where u1 and u2 are determined by the following relation:

u1 =
g(xi + xj, xixj) − g(xk + xl, xixj)

xi + xj − xk − xl

,

u2 =
g(xk + xl, xixj) − g(xk + xl, xkxl)

xixj − xkxl

,

and g is the two variable function satisfing g(x + y, xy) = xn+1 + yn+1. We
now define Cn(Γ1) to be the graded matrix factorization

(

u1 xi + xj − xk − xl

u2 xixj − xkxl

)

R

{−1}

In other words Cn(Γ1) is the tensor product over R of the graded matrix
factorizations

R
u1−→ R{1 − n}

xi+xj−xk−xl
−→ R

and
R

u2−→ R{3 − n}
xixj−xkxl

−→ R

with an additionnal shift by {−1}. As for Lj
i , the grading shift makes Cn(Γ1)

graded.
We distinguish two kinds of tensor products of such elementary graded

matrix factorizations: tensor product over Q corresponding topologically
to a disjoint union of pieces and tensor products over some polynomial Q-
algebra corresponding to a gluing of pieces along some endpoints, see [4]

4



xk

xi

xk xl

xj

xi

xj

Figure 2: Two examples

for a detailed treatment. The potential of graded matrix factorizations is
additive with respect to both tensor products. We consider the two examples
on Figure 2. The graded matrix factorization associated to the left diagram
of Figure 2 is Li

k⊗QLj
l and the graded matrix factorization associated to the

right diagram in Figure 2 is Li
j ⊗Q[xj] Lj

k. In general, we can now associate

to a planar regular graph Γ embedded in R2,

Cn(Γ) =
(

⊗Lj
i

)

⊗

(

⊗Cn(Γ1)
)

where the first tensor runs through all the oriented arcs starting and ending
at marks with no interior mark, and the second runs trough all 4-valent
vertices. The tensor products are over suitable polynomial Q-algebras, see
[4]. The homotopy type of this matrix factorization does not depend on the
choice of marks [4].

1.3 Regular graph embedded in R3 and complex of graded
matrix factorizations

We define two morphisms χ0 and χ1 of graded matrix factorizations between
elementary matrix factorizations as depicted on the following diagram:

xjxjxi

xk xl

χ0

xk

xi

xl

χ1

Γ0 Γ1

The matrix factorization Cn(Γ0) is the tensor product over Q of Li
k and Lj

l

and is given by
(

R
R{2 − 2n}

)

P0−→

(

R{1 − n}
R{1 − n}

)

P1−→

(

R
R{2 − 2n}

)

where

P0 =

(

πik xj − xl

πjl xk − xi

)

, P1 =

(

xi − xk xj − xl

πjl −πik

)

.

The matrix factorization Cn(Γ1) is
(

R{−1}
R{3 − 2n}

)

Q0
−→

(

R{−n}
R{2 − n}

)

Q1
−→

(

R{−1}
R{3 − 2n}

)
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negative positive singular

Figure 3: Crossings

where

Q0 =

(

u1 xixj − xkxl

u2 −xi − x − j + xk + xl

)

Q1 =

(

xi + xj − xk − xl xixj − xkxl

u2 −u1

)

.

We define χ0 : Cn(Γ0) → Cn(Γ1) by the pair of matrices

U0 =

(

xk − xj 0
a 1

)

, U1 =

(

xk −xj

−1 1

)

acting on C0
n(Γ0) and C1

n(Γ0) respectively. The morphism χ1 : Cn(Γ1) →
Cn(Γ0) is defined by the pair of matrices

V0 =

(

1 0
−a xk − xj

)

, V1 =

(

1 xj

1 xk

)

acting on C0
n(Γ1) and C1

n(Γ1) respectively, where a = −u2 + (u1 + xiu2 −
πjl)/(xi − xk). The maps χ0 and χ1 are morphisms of graded matrix fac-
torizations and are of degree 1 ( for the grading {.}).
We now consider a regular graph embedded in R3. We note D a diagram for
this graph. It has three different types of crossing: positive, negative and
singular, see Figure 1.3.

Let k, r, and s be positive intergers. We put marks {x1, . . . , xk} on D
such that every arc between two crossings has at least one mark. We put also
marks {p1, . . . , pr} on every positive or negative crossing and {q1, . . . , qs} on
every singular crossing. As for planar regular graphs we want associate to
every elementary piece of a regular graph diagram an algebraic object, and
in this case it is a complex of graded matrix factorizations.

For an arc that contains no crossings and no other marks, define Li
j as

above and consider it as the chain complex

0 −→ Li
j −→ 0.

where Lj
i is in cohomological degree 0.

For a singular crossing q, define Cn(q) as Cn(Γ1) and consider it as the chain
complex

0 −→ Cn(Γ1) −→ 0.

6



where Cn(Γ1) is in cohomological degree 0. We consider now positive and
negative crossings. For every positive or negative crossing p, there is two
different resolutions, either Γ0 or Γ1.

0

0 -1

1

Γ1Γ0

If p− is a negative crossing we define Cn(p−) to be the chain complex

0 −→ Cn(Γ0){1 − n}
χ0
−→ Cn(Γ1){−n} −→ 0,

and if p+ is a positive crossing we define Cn(p+) to be the chain complex

0 −→ Cn(Γ1){n}
χ1
−→ Cn(Γ0){n − 1} −→ 0,

where Cn(Γ0) is always in cohomological degree 0.
Now to a regular graph diagram D associate the complex of graded matrix
factorizations

Cn(D) =







⊗

Li
j

Li
j







⊗

(

⊗

p

Cn(p)

)

⊗

(

⊗

q

Cn(q)

)

where the first tensor runs through all arcs in D starting and ending at
marks that contain no crossings and no other marks, p runs through all
the positive and negative crossings of D and q runs through all singular
crossings. The tensor products are over suitable polynomial Q-algebras.

2 Reidemeister moves for graphs

We consider open regular graphs embedded in B3 ⊂ R3 as graphs with rigid
vertices. As explained in [2], a 4-valent graph with rigid vertices can be
regarded as an embedding of a graph whose vertices have been replaced by
rigid disks. Each disk has four strands attached to it, and the cyclic order
of these strands is determined via the rigidity of the disk. An RV-isotopy or
rigid vertex isotopy of the embedding of such a regular graph Γ in R3 consists
in affine motions of the disks, coupled with topological ambient isotopies of
the strands (corresponding to the edge of Γ). The notion of RV-isotopy
is a mixture of mechanical (Euclidian) and topological concepts. It arise
naturally in the building of models for graph embeddings, and it also arises
naturally in regard to creating invariant of graph embeddings.
In [2], Kauffman derived a collection of moves, anagolous to Reidemeister
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(I)

(IIa) (IIb)

(III) (IV)

(Va) (Vb)

Figure 4: Graph moves that generate rigid vertex isotopy

moves, that generates RV-isotopy for diagrams of 4-valent graph embed-
dings. As we are only interrested in 4-valent oriented graph embeddings
whose oriented rigid vertex take the basic form

we will present the RV-moves in this case, see Figure 4.

3 Invariance under RV-moves

In [4], Khovanov and Rozansky have proved the invariance of Cn(Γ) under
type (I), (II) and (III) moves, see Figure 4. We prove the invariance under
type (IV) and (V). The invariance under type (IV) follows directly from
the proof of invariance under (III). We will use at many level the proofs
of Khovanov and Rozansky, see [4]. All isomorphisms under graded matrix
factorizations below are in homotopy categories hmf .

3.1 Invariance under (IV)

As pointed out by Wu [6], the Khovanov-Rozansky’s proof of the invariance
under Reidemeister (III) can be simplified by using Bar-Natan’s algebraic
trick [1], i.e by using the fact that the homotopy equivalence used for the
proof of the invariance under Reidemeister move (IIa) is a strong deforma-
tion retract. If we think in the proof that way, then the proof of invariance
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Γ Γ′

Figure 5: Type (IV) move

Γ00

Γ10

Γ01

Γ11

Figure 6: Four resolutions of Γ in the type (IV) move

under (IV) is contained in the one of (III).

We need to show that Cn(Γ) and Cn(Γ′) are isomorphic for Γ, Γ′ in
Figure 5. The diagram Γ has 4 resolutions, denoted by Γij for i, j ∈ {0, 1},
see Figure 6. The complex Cn(Γ){−2n} has the form

0 → Cn(Γ00)
∂−2

→

(

Cn(Γ01){−1}
Cn(Γ10){−1}

)

∂−1

→ Cn(Γ11){−2} → 0

with Cn(Γ11){−2} in cohomological degree 0. This complex is shown in
Figure 6.

Khovanov and Rozansky proved [4] the following isomorphism:

Cn(Γ01) ∼= Cn(Γ11){+1} ⊕ Cn(Γ11){−1}. (1)

Furthermore, they proved that

Cn(Γ00) ∼= Cn(Γ11) ⊕ Υ, (2)

where Υ is defined in [4, Prop. 33].

The differential ∂−2 is injective on Cn(Γ11) ⊂ Cn(Γ00). In fact, the map
to Cn(Γ01){−1} is injective (which follows from the inclusion Cn(Γ11) ⊂
Cn(Γ00) and the proof of invariance under (IIa), see [4]). The graded matrix
factorization ∂−2(Cn(Γ00)) is a direct summand of C−1

n (Γ){−2n}. Thus
Cn(Γ){−2n} contains a contractible summand

0 → Cn(Γ11)
∂−2

→ Cn(Γ11) → 0. (3)
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Γ Γ′

Figure 7: Type (Va) move

The direct sum decomposition (1) can be chosen so that

Cn(Γ01){−1} ∼= p01∂
−2Cn(Γ11) ⊕ Cn(Γ11){−2},

where p01 is the projection of C−1
n (Γ){−2n} onto Cn(Γ01){−1}. The differ-

ential ∂−1 is injective on Cn(Γ11){−2} ⊂ Cn(Γ01){−1}. Furthermore, the
image of Cn(Γ11){−2} ⊂ Cn(Γ01){−1} under ∂−1 is a direct summand of
C0

n(Γ){−2n}. Hence the complex Cn(Γ){−2n} contains a contractible direct
summand isomorphic to

0 → Cn(Γ11){−2}
∂−1

→ Cn(Γ11){−2} → 0 (4)

After splitting off contractible direct summands (3) and (4), the complex
Cn(Γ){−2n} reduces to the complex C defined by

0 → Υ
∂−2

→ Cn(Γ10){−1} → 0

Since both Cn(Γ){−2n} and Cn(Γ′){−2n} contain Cn(Γ10){−1}, [4, Prop.
33] ensures that we can perform exactly the same reduction to Cn(Γ′){−2n}.
Finally, we conclude that

Cn(Γ) ∼= Cn(Γ′).

3.2 Invariance under (Va)

This invariance can be obtained as a consequence of Lemma 4.10 from Ras-
mussen [5]. We detail the proof.

We need to show that Cn(Γ) and Cn(Γ′) are isomorphic for the graphs
Γ, Γ′ shown in Figure 7. The diagram Γ has 4 resolutions, denoted by Γij

for i, j ∈ {0, 1} and shown in Figure 8. The complex Cn(Γ) has the form

0 → Cn(Γ00){+1}
∂−1

→

(

Cn(Γ01)
Cn(Γ10)

)

∂0

→ Cn(Γ11){−1} → 0

where Cn(Γ01) and Cn(Γ10) are in cohomological degree 0. We have depicted
this complex in Figure 8. Since Γ00 and Γ11 are isotopic, Cn(Γ00) and
Cn(Γ11) are isomorphic. Khovanov and Rozansky [4] proved that

Cn(Γ10) ∼= Cn(Γ00){+1} ⊕ Cn(Γ00){−1}. (5)
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Γ00

Γ10

Γ11

Γ01

Figure 8: Four resolutions of Γ in the type (Va) move

Khovanov-Rozansky’s proof of invariance under (IIa) ensures that the dif-
ferential ∂−1 is injective on C−1

n (Γ00). Direct sum decomposition (5) can be
chosen so that

Cn(Γ10) ∼= p10∂
−1Cn(Γ00){+1} ⊕ Cn(Γ00){−1}.

Thus, Cn(Γ) contains a contractible summand

0 → Cn(Γ00){+1}
∂−1

→ Cn(Γ00){+1} → 0. (6)

Furthermore, we have

Cn(Γ11){−1} ∼= Cn(Γ01) ⊕ Cn(Γ01){−2}. (7)

Differential ∂0 is surjective onto Cn(Γ01) ⊂ Cn(Γ11){−1}. Thus Cn(Γ) con-
tains a contractible summand

0 → Cn(Γ01)
∂0

→ Cn(Γ01) → 0. (8)

After splitting off the contractible direct summands (6) and (8), the complex
Cn(Γ) reduces to the complex C of the form

0 → Cn(Γ11){−1}
∂0

→ Cn(Γ01){−2} → 0

Since Γ′ and Γ01 are isotopic, the decomposition (7) ensures that C is ho-
motopy equivalent to

0 → Cn(Γ′) → 0.

3.3 Invariance under (Vb)

We need to show that Cn(Γ) and Cn(Γ′) are isomorphic for the graphs Γ,
Γ′ shown in Figure 9. The diagram Γ has 4 resolutions, denoted by Γij for
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Γ Γ′

Figure 9: Type (Vb) move

Γ10

Γ11

Γ01

Γ00

Figure 10: Four resolution of Γ in the type (Vb) move

i, j ∈ {0, 1} and shown in Figure 10. The complex Cn(Γ) has the form

0 → Cn(Γ00){+1}
t(∂−1,0,∂−1,1)

→

(

Cn(Γ10)
Cn(Γ01)

)

(∂0,0,∂0,1)
→ Cn(Γ11){−1} → 0

where Cn(Γ01) and Cn(Γ10) are in cohomological degree 0. We have depicted
this complex in Figure 10.

Applying Khovanov-Rozansky’s results, we have the following isomor-
phisms:

Cn(Γ00) ∼=

n−2
⊕

i=0

Cn(G00){2 − n + 2i}〈1〉, (9)

Cn(Γ01) ∼=

n−2
⊕

i=0

Cn(G01){2 − n + 2i}〈1〉, (10)

Cn(Γ11) ∼=

n−2
⊕

i=0

Cn(G11){2 − n + 2i}〈1〉, (11)

and

Cn(Γ10) ∼=

(

n−3
⊕

i=0

Cn(G11){3 − n + 2i}〈1〉

)

⊕ Cn(Γ′), (12)
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GG00 G01 G11

Figure 11: The graph G00, G01, G11, G

where G00, G01 and G11 are depicted in Figure 11.
We can twist the direct sum decompositions (9), (10) and (11) so that

∂−1,1 and ∂0,1 have diagonal form following this decomposition: ∂−1,1 =
∑n−2

i=0 ∂−1,1
i and ∂0,1 =

∑n−2
i=0 ∂0,1

i . The proof of invariance under (I) by

Khovanov and Rozansky implies that ∂−1,1
i is split injective and ∂0,1

i is split
surjective for all i ∈ [[0, n−2]]. Hence we have that ∂−1,1 is split injective and
∂0,1 is split surjective. Denote δ−1

i the restriction of δ−1 to Cn(G00){3−n+
2i}〈1〉 and δ0

i the composition of δ0 with the projection onto Cn(G11){1 −
n + 2i}〈1〉. Since the category hmfw has splitting idempotents (see [4, p.
46]), we can decompose C0

n(Γ) as the direct sum

C0
n(Γ) ∼=

(

n−2
⊕

i=0

Im(∂−1
i )

)

⊕

(

n−2
⊕

i=0

Y i
1

)

⊕ Y2

in such a way that ∂0
i restrict to an isomorphism from Y i

1 to Cn(G11){1−n+
2i} for all i = 0, . . . , n − 2 and ∂0

i (Y2) = 0. Therefore, Cn(Γ) is isomorphic
to the direct sum of complexes

0 → Y2 → 0,

0 → Cn(G00){3 − n + 2i}
∼=
→ Im(∂−1

i ) → 0,

0 → Y i
1

∼=
→ Cn(G11){1 − n + 2i} → 0.

We can decompose further the sum decompositions (9), (10) and (11) so
that we obtain

Cn(Γ00) ∼=

n−2
⊕

i=0

n−2
⊕

j=0

Cn(G){4 − 2n + 2(i + j)}, (13)

Cn(Γ01) ∼=

n−2
⊕

i=0

n−1
⊕

j=0

Cn(G){3 − 2n + 2(i + j)}, (14)
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Cn(Γ11) ∼=

n−2
⊕

i=0

n−2
⊕

j=0

Cn(G){4 − 2n + 2(i + j)}, (15)

and

Cn(Γ10) ∼=





n−3
⊕

i=0

n−2
⊕

j=0

Cn(G){5 − 2n + 2(i + j)}



 ⊕ Cn(Γ′), (16)

where G is the right-most graph depicted in Figure 11. From formula (13)
to (16) we obtain

C0
n(Γ) ∼= Cn(Γ01) ⊕ Cn(Γ10) ∼= Cn(Γ00){+1} ⊕ Cn(Γ11){−1} ⊕ Cn(Γ′).

Category hmfw is Krull-Schmidt; it implies that Y2
∼= Cn(Γ′). Therefore,

the complexes Cn(Γ) and 0 → Cn(Γ′) → 0 are isomorphic. This concludes
our proof of the invariance under type (Vb) move. Theorem 1 follows.
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